Flare June 7, 2011, and analysis of eruptive prominence fragments

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Solar flares can be accompanied by high plasma velocities exceeding several hundred km/s. Detection and measurement of such velocities is limited by narrow-band and small wavelength range in most solar instruments. However, similar events with Doppler velocities exceeding two hundred km/s have been detected by the solar optical spectrographs at the Ondřejov Observatory. We present the results of the analysis of our multi-wavelength observations performed during the solar flare of June 7, 2011 and the calculation of several physical parameters of the eruptive prominence fragments following the flare. The calculation of the radiation of heated gas are performed taking into account self-absorption in the spectral lines of hydrogen and calcium. All the crucial processes of discrete level populating and depopulating are taken into account in the balance equations. The theoretical radiation fluxes in the lines coincide with those observed in the temperature range of 6300–10000 K at a gas concentration of about (3–5) × 1010 см–3 , a gas layer thickness of 6800–7000 km and a column density of (2–4) × 1019 см–2 .

Sobre autores

Yu. Kupryakov

Lomonosov Moscow State University, Sternberg Astronomical Institute

Autor responsável pela correspondência
Email: kupry@asu.cas.cz
Rússia, Moscow

K. Bychkov

Lomonosov Moscow State University, Sternberg Astronomical Institute

Email: kupry@asu.cas.cz
Rússia, Moscow

V. Maliutin

Lomonosov Moscow State University

Email: kupry@asu.cas.cz

Faculty of Physics

Rússia, Moscow

A. Gorshkov

Lomonosov Moscow State University, Sternberg Astronomical Institute

Email: kupry@asu.cas.cz
Rússia, Moscow

O. Belova

Lomonosov Moscow State University

Email: kupry@asu.cas.cz

Faculty of Physics

Rússia, Moscow

Bibliografia

  1. F. Reale, S. Orlando, P. Testa, E. Landi, and C. J. Schrijver, Astrophys. J. Letters 797(1), id. L5 (2014).
  2. D. R. Ardila, G. J. Herczeg, S. G. Gregory, L. Ingleby, et al., Astrophys. J. Suppl. 207(1), id. 1 (2013).
  3. P. Gouttebroze, P. Heinzel, and J. C. Vial, Astron. and Astrophys. Suppl. Ser. 99, 513 (1993).
  4. P. Gouttebroze, J. C. Vial, and P. Heinzel, Solar Phys. 172(1–2), 125 (1997).
  5. В. В. Соболев, Курс теоретической астрофизики. 3-е изд-е (М.: Наука, 1985).
  6. О. М. Белова, К. В. Бычков, Астрофизика 61(2), 255 (2018).
  7. L. C. Johnson, Astron. J. 174, 227 (1972).
  8. Г. Грим, Уширение спектральных линий в плазме (М.: Мир, 1978).
  9. Y. Ralchenko, A. Kramida, J. Reader, and NIST ASD Team, 2014; Atomic Spectra Database (version 5.0), http://physics.nist.gov/asd .
  10. W. Cunto and C. Mendoza, Revista Mexicana Astron. Astrof. 23, 107 (1992).
  11. L. C. Green, P. P. Rush, and C. D. Chandler, Astrophys. J. Suppl. 3, 37 (1957).
  12. M. Meléndez, M. A. Bautista, and N. R. Badnell, Astron. and Astrophys. 469(3), 1203 (2007).
  13. H. van Regemorter, 136, 906 (1962).
  14. A. N. Cox (ed.), Allen’s astrophysical quantities (New York: Springer, 2000).
  15. D. R. Williams, D. Baker, and L. van Driel-Gesztelyi, Astrophys. J. 764(2), id. 165 (2013).
  16. J. Carlyle, D. R. Williams, L. van Driel-Gesztelyi, D. Innes, A. Hillier, and S. Matthews, Astrophys. J. 782(2), id. 87 (2014).
  17. D. E. Innes, P. Heinrich, B. Inhester, and L.-J. Guo, Astron. and Astrophys. 592, id. A17 (2016).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © The Russian Academy of Sciences, 2024