Gnevishev-Ohl rule: current status

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A statistical study of the statements of the Gnevyshev—Ohl rule (GOR) and of some its interpretations has been carried out. The original formulation of the GOR states that for the summary index of solar activity over the 11-year cycle SW, there is a close connection in pairs of an even and the subsequent odd cycles (EO), while opposite pairs (OE) exhibit no such connection. This statement strictly holds with the significance level a = 0.01, for the new version of the sunspot index SN 2.0 (Wolf numbers). In this case, an even cycle is followed by an odd one with a greater SW. For amplitudes of cycles the GOR is observed only as a trend, and the difference of connections in pairs of cycles EO and OE is statistically insignificant. The alternation of the cycle magnitude, both for the parameter and the amplitudes, is also not statistically confirmed. It has been found that various aspects of the GOR are statistically better fulfilled for the new version of the sunspot index SN 2.0, which speaks in favor of further use of this index in solar physics.

全文:

受限制的访问

作者简介

Yu. Nagovitsyn

Central Astronomical Observatory of Russian Academy of Sciences at Pulkovo; State University of Aerospace Instrumentation

编辑信件的主要联系方式.
Email: nag-yury@yandex.ru
俄罗斯联邦, Saint Petersburg; Saint Petersburg

A. Osipova

Central Astronomical Observatory of Russian Academy of Sciences at Pulkovo

Email: nag-yury@yandex.ru
俄罗斯联邦, Saint Petersburg

V. Ivanov

Central Astronomical Observatory of Russian Academy of Sciences at Pulkovo

Email: nag-yury@yandex.ru
俄罗斯联邦, Saint Petersburg

参考

  1. R. Wolf, Mitt. Nat. forsch. Ges. Bern 130, 169 (1848).
  2. D. Korteweg, Sitzungsb. Wiener Akad. 88, Abt II (1883).
  3. M. Waldmeier, Ergebnisse und Probleme der Sonnenforschung (Leipzig: Geest and Portig, 1955).
  4. G. E. Hale, Publ. Astron. Soc. Pacific 20, 220 (1908).
  5. H. Turner, Monthly Not. Roy. Astron. Soc. 74, 82 (1913).
  6. H. Ludendorff, Zeitschrift für Astrophysik 2, 370 (1931).
  7. М. Н. Гневышев, А. И. Оль, Астрон. журн. 25, 18 (1948).
  8. F. Clette, L. Svalgaard, J. M. Vaquero, and E. W. Cliver, Space Sci. Rev. 186(1–4), 35 (2014).
  9. F. Clette, E. W. Cliver, L. Lefèvre, L. Svalgaard, J. M. Vaquero, and J. W. Leibacher, Solar Physics 291(9–10), 2479 (2016).
  10. SILSO, World Data Center — Sunspot Number and Long-term Solar Observations, Royal Observatory of Belgium, on-line Sunspot Number catalogue, http://www.sidc.be/SILSO/DATA/SN_y_tot_V2.0.txt .
  11. P. Charbonneau, Liv. Rev. Solar Physics 2(1), id. 2 (2005).
  12. P. Charbonneau, Liv. Rev. Solar Physics 7(1), id. 3 (2010).
  13. P. Charbonneau, Liv. Rev. Solar Physics 17(1), id. 4 (2020).
  14. M. Temmer, J. Rybák, P. Bendík, A. Veronig, F. Vogler, W. Pötzi, W. Otruba, and A. Hanslmeier, Central European Astrophys. Bull. 30, 65 (2006).
  15. P. Charbonneau, G. Blais-Laurier, and C. St-Jean, Astrophys. J. 616(2), L₁83 (2004).
  16. B. Komitov and B. Bonev, Astrophys. J. 554(1), L₁19 (2001).
  17. A. Özgüç and T. Ataç, New Astronomy 8(8), 745 (2003).
  18. T. Ataç and A. Özgüç, Solar Physics 233(1), 139 (2006).
  19. R. P. Kane, Ann. Geophysicae 26(11), 3329 (2008).
  20. J. Javaraiah, Solar Physics 281(2), 827 (2012).
  21. A. R. Choudhuri, Indian J. Phys. 88(9), 877 (2014).
  22. M. Storini and J. Sykora, Contrib. Astron. Observ. Skalnate Pleso 25, 90 (1995).
  23. S. Duhau, Solar Physics 213(1), 203 (2003).
  24. A. A. Ruzmaikin, Solar Physics 100, 125 (1985).
  25. I. Lopes, D. Passos, M. Nagy, and K. Petrovay, Space Sci. Rev. 186(1–4), 535 (2014).
  26. P. Charbonneau, G. Beaubien, and C. St-Jean, Astrophys. J. 658(1), 657 (2007).
  27. D. Passos and P. Charbonneau, Astron. and Astrophys. 568, id. A113 (2014).
  28. G. Usoskin, K. Mursula, and G. A. Kovaltsov, Astron. and Astrophys. 354, L₃3 (2000).
  29. J. Javaraiah, Monthly Not. Roy. Astron. Soc. 362, 1311 (2005).
  30. B. Joshi, P. Pant, and P. K. Manoharan, Astron. and Astrophys. 452, 647 (2006).
  31. F. Stefani, A. Giesecke, and T. Weier, Solar Physics 294, id. 60 (2019).
  32. B. Joshi, R. Bhattacharyya, K. K. Pandey, U. Kushwaha, and Y.-J. Moon, Astron. and Astrophys. 582, id. A4 (2015).
  33. D. H. Hathaway, Liv. Rev. Solar Physics 7, id. 1 (2010).
  34. D. H. Hathaway, Liv. Rev. Solar Physics 12, id. 4 (2015).
  35. G. Usoskin and K. Mursula, Solar Physics 218, 319 (2003).
  36. G. Usoskin, K. Mursula, and G. A. Kovaltsov, Astron. and Astrophys. 370, L₃1 (2001).
  37. M. Temmer, A. Veronig, and A. Hanslmeier, Solar Physics 215, 111 (2003).
  38. J. Javaraiah, L. Bertello, and R. K. Ulrich, Astrophys. J. 626, 579 (2005).
  39. G. Usoskin, K. Mursula, and G. A. Kovaltsov, Geophys. Res. Letters 29, id. 2183 (2002).
  40. J. Li, J. Qiu, T. W. Su, and P. X. Gao, Astrophys. J. 621, L81 (2005).
  41. Yu. A. Nagovitsyn, E. Yu. Nagovitsyna, and V. V. Makarova, Astron. Letters 35(8), 564 (2009).
  42. G. Usoskin, G. A. Kovaltsov, and W. Kiviaho, Solar Physics 296, id. 13 (2021).
  43. K. Petrovay, Liv. Rev. Solar Physics. 17, id. 2 (2020).
  44. Yu. A. Nagovitsyn and A. A. Osipova, Monthly Not. Roy. Astron. Soc. 505, 1206 (2021).
  45. A. L. Bowley, J. Amer. Statistical Association. 23, 31 (1928).
  46. Г. Дёч, Руководство к практическому применению преобразования Лапласа и Z-преобразования. С приложением таблиц, составленных Р. Гершелем (М.: Рипол Классик, 1971).
  47. Т. А. Агекян, Теория вероятностей для астрономов и физиков (М.: Наука, 1974).
  48. S. S. Shapiro and M. B. Wilk, Biometrika 52, 591 (1965).
  49. ГОСТ Р ИСО 5479-2002, Статистические методы. Проверка отклонения распределения вероятностей от нормального распределения (М.: Госстандарт России, ИПК Изд-во стандартов, 2002).
  50. В. Е. Гмурман, Теория вероятностей и математическая статистика (М.: Высшая школа, 1999).
  51. N. A. Rahman, A Course in Theoretical Statistics (London: Charles Griffin and Company, 1968).
  52. Yu. A. Nagovitsyn and A. A. Osipova, Geomagnetism and Aeronomy 58, 1103 (2018).
  53. N. V. Zolotova and D. I. Ponyavin, Geomagnetism and Aeronomy 55, 902 (2015).
  54. J. R. Taylor, An Introduction to Error Analysis (Sausolito, California: University Science Books, 1997).
  55. C. J. Wu, I. G. Usoskin, N. Krivova, G. A. Kovaltsov, M. Baroni, E. Bard, and S. K. Solanki, Astron. and Astrophys. 615, id. A93 (2018).

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Wolf numbers: version 1.0 (a), version 2.0 (b). Even-next odd cycle dependence for cycle sums: version W¹˙⁰ (c), version W²˙⁰ (d), the dashed lines indicate the pair of cycles #22–#23. Odd-next even cycle dependence for cycle sums: version W¹˙⁰ (d), version W²˙⁰ (e). Straight lines are regressions, R are the corresponding correlation coefficients.

下载 (349KB)
3. Fig. 2. Even-next odd cycle dependence for cycle amplitudes: W¹˙⁰ version (a), W²˙⁰ version (b), the dashes indicate the pair of cycles No. 22–23. Odd-next even cycle dependence for cycle amplitudes: W¹˙⁰ version (c), W²˙⁰ version (d). Straight lines are regressions, R are the corresponding correlation coefficients.

下载 (213KB)

版权所有 © The Russian Academy of Sciences, 2024