Азотирование фазы железо–титан: первопринципные расчеты на основе экспериментальных данных
- Авторы: Кистанов А.А.1, Назаров А.Ю.1, Корзникова Е.А.1,2
-
Учреждения:
- Лаборатория “Металлы и сплавы при экстремальных воздействиях”, Уфимский университет науки и технологий
- Северо-Восточный федеральный университет, Политехнический институт (филиал) в Мирном
- Выпуск: Том 126, № 3 (2025)
- Страницы: 354-369
- Раздел: ПРОЧНОСТЬ И ПЛАСТИЧНОСТЬ
- URL: https://rjmseer.com/0015-3230/article/view/686730
- DOI: https://doi.org/10.31857/S0015323025030112
- EDN: https://elibrary.ru/INGZKN
- ID: 686730
Цитировать
Аннотация
Для управления эффектом азотирования, который используется для улучшения механических свойств поверхностей, необходимо фундаментальное понимание этого эффекта. Современные методы квантово-механического моделирования делают возможным проведение экономически эффективных и надежных исследований механизмов воздействия азота на поверхности. В данной работе показана экспериментальная возможность получения азотированной поверхности Fe–Ti с присутсвием интерметаллидных частиц и на основе расчетов теории функционала плотности изучено влияние азотирования на структуру и механические свойства титанизированной стали с использованием модели FeTi. Рассмотрены два случая присутствия азота в кристалле Fe–Ti: равномерное распределение и кластеризация азота. На основе расчетов энергии образования и анализа заселенности кристаллических орбиталей Гамильтона установлено, что более высокая стабильность FeTi достигается при низких концентрациях азота до 5.4%, когда атомы азота распределены равномерно. В то же время FeTi более стабилен при концентрациях азота от 3.7 до 7.4%. Анализ механических свойств азотсодержащего FeTi свидетельствует о том, что модуль Юнга и модуль сдвига увеличиваются с ростом концентрации азота до 5.4%. Полученные результаты дают не только фундаментальные знания об эффекте азотирования титанизированных сталей на основе железа, но и дают новую информацию, необходимую для планирования экспериментальных исследований.
Ключевые слова
Полный текст

Об авторах
А. А. Кистанов
Лаборатория “Металлы и сплавы при экстремальных воздействиях”, Уфимский университет науки и технологий
Email: elena.a.korznikova@gmail.com
Россия, ул. Заки Валиди, 32, Уфа, 450076
А. Ю. Назаров
Лаборатория “Металлы и сплавы при экстремальных воздействиях”, Уфимский университет науки и технологий
Email: elena.a.korznikova@gmail.com
Россия, ул. Заки Валиди, 32, Уфа, 450076
Е. А. Корзникова
Лаборатория “Металлы и сплавы при экстремальных воздействиях”, Уфимский университет науки и технологий; Северо-Восточный федеральный университет, Политехнический институт (филиал) в Мирном
Автор, ответственный за переписку.
Email: elena.a.korznikova@gmail.com
Россия, ул. Заки Валиди, 32, Уфа, 450076; ул. Тихонова, 5, г. Мирный, Республика Саха (Якутия), 678170
Список литературы
- Söderholm P. The green economy transition: the challenges of technological change for sustainability // Sustain Earth. 2020. V. 3. No. 6.
- Yang P., Huang N., Leng Y.X., Chen J.Y., Sun H., Wang J., Chen F., Chu P.K. In vivo study of Ti-O thin film fabricated by PIII // Surf. Coat. Technol. 2002. V. 156. No. 1–3. P. 284–288.
- Weng Y., Song Q., Zhou Y., Zhang L., Wang J., Chen J., Leng Y., Li S., Huang N. Immobilization of selenocystamine on TiO2 surfaces for in situ catalytic generation of nitric oxide and potential application in intravascular stents // Biomaterials. 2011. V. 32. No. 5. P. 1253–1263.
- Kwon H., Park Y., Nam U.H., Lee E., Byon E. Comparative Research on Corrosion Resistant Non-Skid Al and Al-3%Ti Coating Fabricated by Twin Wire arc Spraying // Korean J. Met. Mater. 2023. V. 61. P. 242–251.
- Cao H., Liu F., Hao L., Qi F., Ouyang X., Zhao N., Liao B. High temperature tribological performance and thermal conductivity of thick Ti/Ti-DLC multilayer coatings with the application potential for Al alloy pistons // Diam. Relat. Mater. 2021. V. 117. P. 108466.
- Dang N.M., Lin W-Y., Wang Z-Y., Alidokht S.A., Chromik R.R., Chen T.Y-F., Lin M-T. Mechanical Properties and Residual Stress Measurement of TiN/Ti Duplex Coating Using HiPIMS TiN on Cold Spray Ti // Coatings. 2022. V. 12. № 6. P. 759.
- Pawłowski Ł., Bartmanski M., Mielewczyk-Gryń A., Zielinski A. Effects of Surface Pretreatment of Titanium Substrates on Properties of Electrophoretically Deposited Biopolymer Chitosan/Eudragit E 100 Coatings // Coatings. 2021. V. 11. № 9. P. 1120.
- Gao J., Xu F., Ma Z., Shi L., Wang X., Zuo D. Adherent diamond coating deposited on Ti by ultrasonic after carbonization pretreatment // Proc. Inst. Mech. Eng. B: J. Eng. Manuf. 2019. 0(0). P. 1–10.
- Egorov I., Fomin A. Deposition of a titanium coating on a steel base by contact welding and study of the resulting layered system structure // J. Phys. Conf. Ser. 2020. V. 1695. P. 012175.
- Vardanyan E.L., Ramazanov K.N., Nagimov R.Sh., Nazarov A.Yu. Properties of intermetallic Ti-Al based coatings deposited onultrafine grained martensitic steel // Yu. Surf. Coat. Technol. 2020. V. 389. P. 125657.
- Windmann M., Röttger A., Theisen W. Formation of intermetallic phases in Al-coated hot-stamped 22MnB5 sheets in terms of coating thickness and Si content // Surf. Coat. Technol. 2014. V. 246. P. 17–25.
- Lobzenko I., Shiihara Y., Sakakibara A., Uchiyama Y., Umeno Y., Todaka Y. Chemisorption enhancement of single carbon and oxygen atoms near the grain boundary on Fe surface: ab initio study // Appl. Surf. Sci. 2019. V. 493. P. 1042–1047.
- Brodland G.W. How computational models can help unlock biological systems // Cell Dev. Biol. 2015. V. 47–48. P. 62–73.
- Rouse I., Power D., Brandt E.G., Schneemilch M., Kotsis K., Quirke N., Lyubartsev A.P., Lobaskin V. First principles characterisation of bio-nano interface // Phys. Chem. Chem. Phys. 2021. V. 23. P. 13473–13482.
- Diaz Ochoa J.G. A unified method for assessing the observability of dynamic complex systems // Comput. Biol. Med. 2023. V. 160. P. 107012.
- Zimmerman J., Lindemann Z., Golański D., Chmielewski T., Włosiński W. Modeling residual stresses generated in Ti coatings thermally sprayed on Al2O3 substrates // Bull. Pol. Acad. Sci.: Tech. Sci. 2013. V. 61. No. 2. P. 515–525.
- Wang L., Ren J., Zhao Y., Ji V., Huabing L., Liu M., Wang Z., Jiang C., Zhanyong W. Effect of Ti microparticles on the microstructure and properties of Ni-Ti composite coating prepared by electrodeposition // J. Alloys Compd. 2022. V. 908. P. 164313.
- Park J., Yu N., Jang D., Jung E., Noh H., Moon J., Kil D., Shong B. Adsorption of Titanium Halides on Nitride and Oxide Surfaces During Atomic Layer Deposition: A DFT Study // Coatings. 2020. V. 10. No. 8. P. 712.
- Khadraoui A., Bentayeb F. First-Principles Study of Hydrogen Storage in Fe-Ti System // Defect and Diffusion Forum. 2015. V. 365. P. 266–271.
- Buchinger J., Koutná N., Kirnbauer A., Holec D., Mayrhofer P. Heavy-element-alloying for toughness enhancement of hard nitrides on the example Ti-W-N // Acta Mater. 2022. V. 231. P. 117897.
- Fedotova A. Analysis of nitride hardening and technology for small-batch production // In Science intensive technologies in mechanical engineering. 2020. V. 2020. No. 6. P. 12–15.
- Maisuradze M.V., Ryzhkov M.A., Belikov S.V., Kornienko O.Y., Karabanalov M.S., Zhilyakov A.Y. Cementation, nitrocementation and nitriding of steel products // Ural University Publishing House, Yekaterinburg. 2021. P. 102.
- Kang K., Kwon S., Lee C., Hong D., Lee H.M. Hierarchical analysis of alloying element effects on gas nitriding rate of Fe alloys: A DFT, microkinetic and kMC study // Acta Mater. 2019. V. 174. P. 174–180.
- Dolgov N., Rutkovskyi A. Structural Steel Microhardness Improvement by Ion Nitriding // Strength Mater. 2022. V. 54. P. 819–824.
- Berrached I., Rabahi L., Gallouze M., Kellou A. Nitriding effect on structural stability and magnetic properties of FeAl alloys: DFT study // J. Magn. Magn. Mater. 2018. V. 480. P. 79–86.
- Gao W., Zhang Z., Zhao S., Wang Y., Chen H., Lin X. Effect of small addition of Ti on the Fe-based coating by laser cladding // Surf. Coat. Technol. 2016. V. 291. P. 423–429.
- Song M., Guo J., Yang Y., Geng K., Xiang M., Zhu Q., Zhao H. Fe2Ti interlayer for improved adhesion strength and corrosion resistance of TiN coating on stainless steel 316L // Appl. Surf. Sci. 2019. V. 504. P. 144483.
- Zhu Z.Y., Liu Y.L., Gou G.Q., Gao W., Chen J. Effect of heat input on interfacial characterization of the butter joint of hot-rolling CP-Ti/Q235 bimetallic sheets by Laser + CMT // Sci. Rep. 2021. V. 11. P. 10020.
- Chu Q., Tong X., Xu S., Zhang M., Li J., Yan F.X., Yan C. Interfacial investigation of explosion-welded Titanium/steel bimetallic plates // J. Mater. Eng. Perform. 2020. V. 29. P. 78–86.
- Vardanyan E.L., Budilov V.V. Technology of the deposition of composite coatings based on Ti–Al intermetallic compounds by vacuum-arc plasma discharge // J. Surf. Investig. 2016. V. 10. P. 728–731.
- Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set // J. Phys. Rev. B. 1996. V. 54. P. 11169.
- Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple // Phys. Rev. Lett. 1996. V. 77. P. 3865–3868.
- https://materialsproject.org/materials/mp-305#thermodynamic_stability (Accessed on 7 July 2023).
- Dudarev S.L., Ma P.-W. Elastic fields, dipole tensors, and interaction between self-interstitial atom defects in bcc transition metals // Phys. Rev. Mater. 2018. V. 2. P. 033602.
- Gaillac R., Pullumbi P., Coudert F.-X. ELATE: an open-source online application for analysis and visualization of elastic tensors // J. Phys.: Condens. Matter. 2016. V. 28. P. 275201.
- Maintz S., Deringer V.L., Tchougreeff A.L., Dronskowski R. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT // J. Comput. Chem. 2016. V. 37. P. 1030–1035.
- Mao Y., Yang H., Sheng Y., Wang J., Ouyang R., Ye C., Zhang W. Prediction and Classification of Formation Energies of Binary Compounds by Machine Learning: An Approach without Crystal Structure Information // ACS Omega 2021. V. 6. No. 22. P. 14533–14541.
- Ray R., Giessen B.C., Grant N. The constitution of metastable titanium-rich Ti-Fe alloys: An order-disorder transition // J. Metall. Trans. 1972. V. 3. P. 627–629.
- Zhu L.F., Friak M., Udyansky A., Ma D., Schlieter A., Kuehn U., Eckert J., Neugebauer J. Ab initio basedstudy of finite-temperature structural, elastic and thermodynamic properties of FeTi // Intermetallics. 2014. V. 45. P. 11–17.
- Oka H., Tanno T., Yano Y., Ohtsuka S., Kaito T., Hashimoto N. Effect of nitrogen concentration on creep strength and microstructure of 9Cr-ODS ferritic/martensitic steel // J. Nucl. Mater. 2022. V. 572. P. 154032.
- Gonzales-Ormeño P.G., Schön C.G. Electron theoretical investigation of the stability of the B2-TiFe compound // J. Alloys Compd. 2009. V. 470. P. 301–305.
- Momeni K., Ji Y., Wang Y., Paul S., Neshani S., Yilmaz D.E., Chen L.-Q. Multiscale computational understanding and growth of 2D materials: a review // NPJ Comput. Mater. 2020. V. 6. No. 1. P. 22.
- Aghajani H., Motlagh M.S. Effect of temperature on surface characteristics of nitrogen ion implanted biocompatible titanium // J. Mater. Sci.: Mater. Med. 2017. V. 28. P. 29.
- Dai B., Ma Y., Yu F., Yuan M., Chu J., Xu Y. Research on promoting the formation and clusters of TiN phase in high purity cast iron // Metallurgy. 2023. V. 62. No. 1. P. 53–56.
- Born M. On the stability of crystal lattices // Math. Proc. Camb. Phil. Soc. 1940. V. 36. P. 160–172.
- Mouhat F., Coudert F.X. Necessary and sufficient elastic stability conditions in various crystal systems // Phys. Rev. B. 2014. V. 90. P. 224104.
- Buchenau U., Schober H.R., Welter J.-M., Arnold G., Wagner R. Lattice dynamics of Fe0.5Ti0.5 // Phys. Rev. B. 1983. V. 27. P. 955–962.
- Voigt W. Lehrbuch der kristallphysik. Germany: Vieweg + Teubner Verlag, 1928.
- Reuss A. Calculation of the Flow Limits of Mixed Crystals on the Basis of the Plasticity of Monocrystals // ZAMM. 1929. V. 9. P. 49–58.
- DeWit R. elastic constants and thermal expansion averages of a non textured polycrystals // J. Mech. Mater. Struct. 2008. V. 3. No. 2. P. 195–212.
- Hill R. The Elastic Behaviour of a Crystalline Aggregate // Proc. Phys. Soc. A. 1952. V. 65. P. 349–354.
- Pugh S.F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals // The London, Edinburgh, and Dublin Phil. Mag. J. Sci. 1954. V. 45. P. 823–843.
- Frantsevich I.N., Voronov F.F., Bokuta S.A. Elastic constants and elastic moduli of metals and insulators handbook. Kiev: Naukova Dumka, 1983. P. 60–180.
- Ranganathan S.I., Ostoja-Starzewski M. Universal Elastic Anisotropy Index // Phys. Rev. Lett. 2008. V. 101. P. 055504.
- Benyelloul K., Bouhadda Y., Bououdina M., Faraoun H.I., Aourag H., Seddik L. The effect of hydrogen on the mechanical properties of FeTi for hydrogen storage applications // Int. J. Hydrog. Energy. 2014. V. 39. No. 2. P. 12667–12675.
- Ravindran P., Fast L., Korzhavyi P.A., Johansson B., Wills J., Eriksson O. Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2 // J. Appl. Phys. 1998. V. 84. No. 9. P. 4891–4904.
Дополнительные файлы
