Simulation of ZnWO4 sanmartinite by the method of interatomic potentials
- Autores: Dudnikova V.B.1, Zharikov E.V.2, Eremin N.N.1,3
-
Afiliações:
- Lomonosov Moscow State University
- Prokhorov General Physics Institute of the Russian Academy of Sciences
- Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM RAS)
- Edição: Volume 70, Nº 1 (2025)
- Páginas: 3-9
- Seção: КРИСТАЛЛОХИМИЯ
- URL: https://rjmseer.com/0023-4761/article/view/686172
- DOI: https://doi.org/10.31857/S0023476125010012
- EDN: https://elibrary.ru/IUCFWN
- ID: 686172
Citar
Resumo
The structure and properties of ZnWO4 have been simulated using the method of empirical interatomic potentials. The system of consistent interatomic potentials has been developed, which makes it possible to describe the structure, elastic and thermodynamic properties of zinc tungstate and provide the simulation of more complex composite media involving this component.
Texto integral

Sobre autores
V. Dudnikova
Lomonosov Moscow State University
Autor responsável pela correspondência
Email: VDudnikova@hotmail.com
Rússia, Moscow
E. Zharikov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: VDudnikova@hotmail.com
Rússia, Moscow
N. Eremin
Lomonosov Moscow State University; Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM RAS)
Email: VDudnikova@hotmail.com
Rússia, Moscow; Moscow
Bibliografia
- Kroeger E.A. // Some Aspects of the Luminescence of Solids. New York: Elsevier, 1948. P. 107.
- Degoda V.Ya., Afanasieva L.A., Belli P. et al. // J. Lumin. 2022. V. 249. 119028. https://doi.org/10.1016/j.jlumin.2022.119028
- Nagornaya L.L., Dubovik A.M., Vostretsov Y.Y. // IEEE Trans. Nucl. Sci. 2008. V. 55. P. 1469. https://doi.org/10.1109/TNS.2007.910974
- Galashov E.N., Gusev V.A., Shlegel V.N., Vasiliev Ya.V. // Crystallography Reports. 2009. V. 54. P. 689. https://doi.org/10.1134/S1063774509040245
- Leng X., Dai L., Chao X. et al. // Optik. 2014. V. 125. P. 1267. http://dx.doi.org/10.1016/j.ijleo.2013.08.033
- Atuchin V.V., Bekenev V.L., Borovlev Yu.A. et al. // J. Optoelectron. Adv. Mater. 2017. V. 19. P. 86.
- Barabash A.S., Belli P., Bernabei R. et al. // Nucl. Instrum. Methods Phys. Res. A. 2016. V. 833. P. 77. http://dx.doi.org/10.1016/j.nima.2016.07.025
- Belli P., Bernabei R., Borovlev Y.A. et al. // Nucl. Instrum. Methods Phys. Res. A. 2022. V. 1029. 166400. https://doi.org/10.1016/j.nima.2022.166400
- Grassmann H., Moser H.G. // J. Lumin. 1985. V. 33. P. 109. https://doi.org/10.1016/0022-2313(85)90034-1
- Dkhilalli F., Borchani S.M., Rasheed M. // J. Mater. Sci.: Mater. Electron. 2018. V. 29. P. 6297. https://doi.org/10.1007/s10854-018-8609-z
- Jeong H.Y., Lim H.S., Lee J.H. // Nanomaterials. 2020. V. 10. P. 1721. http://dx.doi.org/10.3390/nano10091721
- De Macedo O.B., de Oliveira A.L.M., dos Santos I.M.G. // Ceramica. 2022. V. 68. P. 294. https://orcid.org/0000-0002-7930-6234
- Lou Z., Hao J., Cocivera M. // J. Lumin. 2002. V. 99. P. 349. https://doi.org/10.1016/S0022-2313(02)00372-1
- Bernabei R., Belli P., Cappella F. et al. // EPJ Web Conf. 2017. V. 136. 05002. https://doi.org/10.1051/epjconf/201713605002
- Caracciolo V., Degoda V.Ya., Belli P. et al. // SciPost Phys. Proc. 2023. V. 12. P. 021. https://doi.org/10.21468/SciPostPhysProc.12.021
- Wang X., Fan Z., Yu H. et al. // Opt. Mater. Express. 2017. V. 7. P. 1732. https://doi.org/10.1364/OME.7.001732
- Xia Z., Yang F., Qiao L., Yan F. // Opt. Commun. 2017. V. 387. P. 357. http://dx.doi.org/10.1016/j.optcom.2016.12.008
- Subbotin K., Loiko P., Volokitina A. et al. // J. Lumin. 2020. V. 228. 117601. https://doi.org/10.1016/j.jlumin.2020.117601
- Chen X.P., Xiao F., Ye S. et al. // J. Alloys Compd. 2011. V. 509. P. 1355. https://doi.org/10.1016/j.jallcom.2010.10.061
- Ran W., Wang Q., Zhou Y. et al. // Mater. Res. Bull. 2015. V. 64. P. 146. http://dx.doi.org/10.1016/j.materresbull.2014.12.050
- Филипенко О.С., Победимская Е.А., Белов Н.В. // Кристаллография. 1968. Т. 13. С. 163.
- Trots D.M., Senyshyn A., Vasylechko L. et al. // J. Phys.: Condens. Matter. 2009. V. 21. 325402. https://doi.org/10.1088/0953-8984/21/32/325402
- Brik M.G., Nagirnyi V., Kirm M. // Mater. Chem. Phys. 2013. V. 137. P. 977. http://dx.doi.org/10.1016/j.matchemphys.2012.11.011
- Zhang X.Q., Zhang B. // Rus. J. Phys. Chem. B. 2023. V. 17. P. 1049. http://dx.doi.org/0.1134/S1990793123050135
- Errandonea D., Manjón F.J., Garro N. et al. // Phys. Rev. B. 2008. V. 78. 054116. http://dx.doi.org/10.1103/PhysRevB.78.054116
- Evarestov R., Kalinko A., Kuzmin A. et al. // Integr. Ferroelectr. 2009. V. 108. P. 1. https://doi.org/10.1080/10584580903323990
- Kohn W., Sham L.J. // Phys. Rev. 1965. V. 140. P. A1133. https://doi.org/10.1103/PhysRev.140.A1133
- Perdew J.P., Chevary J.A., Vosko S.H. et al. // Phys. Rev. B. 1992. V. 46. P. 6671. https://doi.org/10.1103/PhysRevB.46.6671
- Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
- Senyshyn A., Kraus H., Mikhailik V.B., Yakovyna V. // Phys. Rev. B. 2004. V. 70. 214306. https://doi.org/10.1103/PhysRevB.70.214306
- Дудникова В.Б., Жариков Е.В. // ФТТ. 2017. T. 59. C. 847. http://dx.doi.org/10.21883/FTT.2017.05.44370.359
- Lin Q., Feng X // J. Phys.: Condens. Matter. 2003. V. 15. P. 1963. http://dx.doi.org/10.1088/0953-8984/15/12/313
- Dudnikova V.B., Zharikov E.V., Eremin N.N. // Mater. Today Commun. 2020. V. 23. 101180. http://doi.org/10.1016/j.mtcomm.2020.101180
- Shao Z., Zhang Q., Liu T., Chen J. // Nucl. Instrum. Methods Phys. Res. B. 2008. V. 266. P. 797. http://dx.doi.org/10.1016/j.nimb.2008.01.018
- Дудникова В.Б., Антонов Д.И., Жариков Е.В., Еремин Н.Н. // ФТТ. 2022. Т. 64. С. 1741. http://dx.doi.org/10.21883/FTT.2022.11.53328.413
- Huang H., Liu L., Tian N., Zhang Y. // J. Alloys Compd. 2015. V. 637. P. 471. http://dx.doi.org/10.1016/j.jallcom.2015.02.224
- Tang L., Zhu M., Chen W. et al. // New J. Chem. 2020. V. 44. P. 19796. http://dx.doi.org/10.1039/d0nj04622a
- Malyukin Y., Seminko V., Maksimchuk P., Bespalova I. // Opt. Mater. 2019. V. 98. 109455. https://doi.org/10.1016/j.optmat.2019.109455
- Krutyak N., Nagirnyi V., Zadneprovski B., Buriy M. // J. Lumin. 2024. V. 267. 120356. https://doi.org/10.1016/j.jlumin.2023.120356
- Gale J.D. // Z. Kristallogr. 2005. V. 220. P. 552. https://doi.org/10.1524/zkri.220.5.552.65070
- Урусов В.С., Еремин Н.Н. Атомистическое компьютерное моделирование структуры и свойств неорганических кристаллов и минералов, их дефектов и твердых растворов. М: ГЕОС, 2012. 428 c.
- Scofield P.F., Knight K.S., Redfern S.A.T., Cressey G. // Acta Cryst. B. 1997. V. 53. P. 102. https://doi.org/10.1107/S0108767396008446
- Dahlborg M.A., Svensson G. // Acta Chem. Scandinavica. 1999. V. 53. P. 1103. https://doi.org/10.3891/acta.chem.scand.53-1103
- Redfern S.A.T., Bell A.M.T., Henderson C.M.B. et al. // Eur. J. Mineral. 1995. V. 7. P. 1019. https://doi.org/10.1127/ejm/7/4/1019
- Kuzmin A., Purans J. // Radiat. Measur. 2001. V. 33. P. 583. https://doi.org/10.1016/S1350-4487(01)00063-4
- Yadav P., Rout S.K., Sinha E. // J. Alloys Compd. 2017. V. 726. P. 1014. http://dx.doi.org/10.1016/j.jallcom.2017.07.308
- Pisarevskii Yu.V., Silvestrova I.M., Voszka R. et al. // Phys. Status Solidi. A. 1988. V. 107. P. 161. https://doi.org/10.1002/pssa.2211070115
- Ruiz-Fuertes J., Lopez-Moreno S., Errandonea D. et al. // J. Appl. Phys. 2010. V. 107. 083506. http://dx.doi.org/10.1063/1.3380848
- Ma L., Yibibulla T., Jiang Y. et al. // Physica E. 2022. V. 136. 114990. https://doi.org/10.1016/j.physe.2021.114990
- Lyon W.G., Westrum Jr. E.F. // J. Chem. Thermodyn. 1974. V. 6. P. 763. https://doi.org/10.1016/0021-9614(74)90141-4
- Landee C.P., Westrum Jr. E.F. // J. Chem. Thermodyn. 1975. V. 7. P. 973. https://doi.org/10.1016/0021-9614(75)90161-5
- Попов П.А., Скробов С.А., Матовников А.В. и др. // ФТТ. 2016. T. 58. C. 827.
Arquivos suplementares
