Cesium hydrosulfate phosphate crystals: conductivity and real structure at increasing temperature
- Autores: Gainutdinov R.V.1, Tolstikhina A.L.1, Makarova I.P.1, Leesment S.2, Komornikov V.A.1
-
Afiliações:
- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov institute”
- LLC “Xillect”
- Edição: Volume 70, Nº 1 (2025)
- Páginas: 84-89
- Seção: ПОВЕРХНОСТЬ, ТОНКИЕ ПЛЕНКИ
- URL: https://rjmseer.com/0023-4761/article/view/686182
- DOI: https://doi.org/10.31857/S0023476125010119
- EDN: https://elibrary.ru/ISMTJY
- ID: 686182
Citar
Resumo
Superprotonic crystals Cs3(HSO4)2(H2PO4) and Cs4(HSO4)3(H2PO4) have been investigated by conducting atomic force microscopy at increasing temperature. Local volt-ampere characteristics have been measured and an increase in conductivity at 413–453 K for Cs3(HSO4)2(H2PO4) and Cs4(HSO4)3(H2PO4) by two and three orders of magnitude, respectively, has been recorded. Differences in the conductive characteristics of crystals of different compositions in the vicinity of the phase transition are shown. Information on topographic and electrical features of crystalline phases before and after exposure to temperature and electric fields has been obtained. The influence of external factors on the stability of the surface microstructure is evaluated. Possible mechanisms of structural-phase transformations of isostructural compounds with different ratio of sulfate and phosphate groups are discussed.
Texto integral

Sobre autores
R. Gainutdinov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov institute”
Email: alla@crys.ras.ru
Rússia, Moscow
A. Tolstikhina
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov institute”
Autor responsável pela correspondência
Email: alla@crys.ras.ru
Rússia, Moscow
I. Makarova
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov institute”
Email: alla@crys.ras.ru
Rússia, Moscow
S. Leesment
LLC “Xillect”
Email: alla@crys.ras.ru
Rússia, Moscow
V. Komornikov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov institute”
Email: alla@crys.ras.ru
Rússia, Moscow
Bibliografia
- Haile S.M., Boysen D.A., Chisholm C.R.I., Merle R.B. // Nature. 2001. V. 410. P. 910. https://doi.org/10.1038/35073536
- Pawlaczyk Cz., Pawłowski A., Połomska M. et al. // Phase Transitions. 2010. V. 83. P. 854. http://dx.doi.org/10.1080/01411594.2010.509159
- Louie M.W., Hightower A., Haile S.M. // ACS Nano. 2010. V. 4. № 5. P. 2811.
- Paschos O., Kunze J., Stimming U., Maglia F. // J. Phys.: Condens. Matter. 2011. V. 23. P. 234110. http://dx.doi.org/10.1088/0953-8984/23/23/234110
- Ponomareva V., Lavrova G. // Solid State Electrochem. 2011. V. 15. P. 213. https://doi.org/10.1007/s10008-010-1227-1
- Dupuis A.-C. // Progress in Materials Science. 2011. V. 56. P. 289. http://dx.doi.org/10.1016/j.pmatsci.2010.11.001
- Mohammad N., Mohamad A.B., Kadhum A.A.H., Loh K.S. // J. Power Sources. 2016. V. 322. P. 77. https://doi.org/10.1016/j.jpowsour.2016.05.021
- Aili D., Gao Y., Han J., Li Q. // Solid State Ionics. 2017. V. 306. P. 13. http://dx.doi.org/10.1016/j.ssi.2017.03.012
- Colomban P. // Solid State Ionics. 2019. V. 334. P. 125. https://www.researchgate.net/publication/331249475
- Ortiz E., Vargas R.A., Tróchez J.C. et al. // J. Phys. Status Solidi. C. 2007. V. 4. № 11. P. 4070. https://doi.org/10.1002/pssc.200675933
- Ortiz E., Piñeres I., León C. // J. Therm. Anal. Calorim. 2016. V. 126. P. 407. https://doi.org/10.1007/s10973-016-5474-y
- Баранов А.И., Синицин В.В., Понятовский Е.Г. и др. // Письма в ЖЭТФ. 1986. Т. 44. Вып. 44. С. 186.
- Mikheykin A.S., Chernyshov D.Yu., Makarova I.P. et al. // Solid State Ionics. 2017. V. 305. P. 30. https://doi.org/10.1016/j.ssi.2017.04.017
- Papandrew B., Li Q., Okatan M.B. et al. // Nanoscale. 2015. V. 7. P. 20089. https://doi.org/10.1039/c5nr04809e
- Kalinin S., Dyck O., Balke N. et al. // ACS Nano. 2019. V. 13. № 9. P. 9735. https://doi.org/10.1021/acsnano.9b02687
- Kempaiah R., Vasudevamurthy G., Subramanian A. // Nano Energy. 2019. P. 103925. https://doi.org/10.1016/j.nanoen.2019.103925
- Гайнутдинов Р.В., Толстихина А.Л., Селезнева Е.В., Макарова И.П. // ЖТФ. 2020. № 11. С. 1843. https://doi.org/10.21883/JTF.2020.11.49972.116-20
- Коморников В.А., Гребенев В.В., Макарова И.П. и др. // Кристаллография. 2016. Т. 61. № 4. С. 645. https://doi.org/10.1134/S1063774516040106
- Гайнутдинов Р.В., Толстихина А.Л., Селезнева Е.В. и др. // Кристаллография. 2024. Т. 69. № 3. С. 470. https://doi.org/10.31857/S0023476124030129
- Анкудинов А.В., Гущина Е.В., С.А. Гуревич С.А. и др. // Международный научный журнал “Альтернативная энергетика и экология”. 2008. № 10 (66). С. 30.
- Гайнутдинов Р.В., Толстихина А.Л., Селезнева Е.В. и др. // Кристаллография. 2023. Т. 68. № 2. С. 290. https://doi.org/10.31857/S0023476123020066
- Makarova I.P., Isakova N.N., Kalyukanov A.I. et al. // Acta Cryst. B. 2024. V. 80. P. 201. https://doi.org/10.1107/s2052520624003470 Q2
Arquivos suplementares
