Adaptation of detection thresholds based on the results of multi-frame accumulation radar signals against the background of non-gaussian noise

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

An algorithm for stabilizing the false alarm rate is proposed, based on the approximation of the probability distribution density of the decisive statistics counts during multi-frame accumulation against the background of noise described by the Rayleigh and Weibull distributions. It is shown that the proposed algorithm for stabilizing the false alarm rate is adaptive and invariant to the noise distribution law.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Koshelev

Ryazan State Radiotechnical University named after V.F. Utkin

Email: belokurov.v.a@rsreu.ru
Ресей, Gagarin str., 59/1, Ryazan, 390005

V. Belokurov

Ryazan State Radiotechnical University named after V.F. Utkin

Хат алмасуға жауапты Автор.
Email: belokurov.v.a@rsreu.ru
Ресей, Gagarin str., 59/1, Ryazan, 390005

Әдебиет тізімі

  1. Сосулин Ю.Г. Теория обнаружения и оценивания стохастических сигналов. М.: Советское радио, 1978.
  2. Ширман Я.Д., Манжос В.Н. Теория и техника обработки радиолокационной информации на фоне помех. М.: Радио и связь, 1981.
  3. Arnold J. // IEEE Trans. 1993. V. AES-29. № 1. Р. 44.
  4. Бакулев П.А. Радиолокационные системы. М.: Радиотехника, 2015.
  5. Финкильштейн М.И. Основы радиолокации. М.: Радио и связь, 1983.
  6. Serine M. Weibull Radar Clutter. L.: Peter Peregrinus Ltd, 1990.
  7. Watts S. Sea Clutter: Scattering, the K Distribution and Radar Performance. L.: The Institution of Engineering and Technology, 2006.
  8. Марковская теория оценивания случайных процессов / Под ред. М.С. Ярлыкова. М.: Радио и связь, 1993.
  9. Радиоэлектронные комплексы навигации, прицеливания и управления вооружением летательных аппаратов. Т. 2. Применение авиационных радиолокационных комплексов при решении боевых и навигационных задач / Под ред. М.С. Ярлыкова. М.: Радиотехника, 2012.
  10. Johnson L. // IEEE Trans. 2002. V. AES-38. № 1. P. 228.
  11. Tonissen S. M., Evans R. J. // IEEE Trans. 1996. V. AES-32. № 10. P. 1440.
  12. Yi W. // IEICE Trans. Commun. 2013. V. 16. № 1. P. 291.
  13. Belokurov V.A., Koshelev V.I., Kagalenko M.V.// Proc. 2019 8nd Mediterranean Conf. on Embedded Computing (MECO). Budva. 10-14 Jun. N.Y.: IEEE, 2019. Paper No. 8760010.
  14. Кошелев В.И., Белокуров В.А. // Цифровая обработка сигналов. 2018. № 4. С. 50.
  15. Gumbel E. J. Statistics of Extremes. N.Y.: Mineola, 2000.
  16. Guida M., Iovino D., Longo M. // IEEE J. Selected Areas Commun. V. 6. № 1. 1988.
  17. Лихарев В.А. Цифровые методы и устройства в радиолокации. М.: Сов. радио, 1973.
  18. Coles S. An Introduction to Statistical Modeling of Extreme Values. L.: Springer, 2001.
  19. Castillo J. Estimation of Generalized Pareto Distribution. Statistics and Probability Letters. N.Y.: Elsevier, 2009.
  20. Cowan G. Statistical Data Aanalysis. Oxford: Oxford Univ. Press, 1998.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Illustration of the issue of taking into account the target movement model between two adjacent surveys. The dotted line highlights the area of ​​possible transition of target parameters between the k-th and (k−1)-th surveys.

Жүктеу (86KB)
3. Fig. 2. Formation of a “sliding” window based on reviews.

Жүктеу (94KB)
4. Fig. 3. Structural diagram of the false alarm level stabilization block.

Жүктеу (129KB)
5. Fig. 4. Dependences of the false alarm probability on the sample size M for the Rayleigh distribution at qдqАЗ=40 (a) and qдqАЗ=20 (b): K = 6 (1) and 4 (2); the dashed line is the specified value of the false alarm probability.

Жүктеу (130KB)
6. Fig. 5. Dependences of the false alarm probability on the sample size M for the Weibull distribution with K = 6, qдqАЗ = 40: curve 1 – coefficients of scale 2.0 and shape 1.0, curve 2 – coefficients of scale 1.0 and shape 2.0.

Жүктеу (78KB)
7. Fig. 6. Detection characteristics of the inter-review accumulation algorithm: curve 1 corresponds to the known algorithm for calculating the detection threshold [10], curve 2 – to the proposed algorithm.

Жүктеу (71KB)

© Russian Academy of Sciences, 2024