Aerosol printing of electrochromic films based on nickel and tungsten doped V2O5

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Vanadium(V) oxide films doped with 10 mol% NiO and 10 mol. % WO3 were obtained by aerosol printing. In the first case, the film crystallizes in tetragonal β-V2O5 modification with high texturing along the {200} crystallographic plane, while the material is X-ray amorphous when doped with tungsten. At nickel doping the film is formed by one-dimensional structures, while in the case of the sample V2O5–10 mol. % WO3 — by particles of irregular shape or close to rounded. The values of electron yield work from the surface of the materials indicate high defectivity of the film containing WO3. Both samples demonstrate anodic electrochromism, but V2O5–10 mol. % NiO is characterized by higher values of optical contrast and coloring efficiency. The results of the study clearly reflect the influence of the nature of the considered dopants on the functional properties of the obtained materials and demonstrate the promising potential of the aerosol printing method for the formation of electrochromic films.

Sobre autores

P. Gorobtsov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: phigoros@gmail.com
Leninsky pr., 31, Moscow, 119991 Russia

N. Fisenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: phigoros@gmail.com
Leninsky pr., 31, Moscow, 119991 Russia

N. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: phigoros@gmail.com
Leninsky pr., 31, Moscow, 119991 Russia

T. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: phigoros@gmail.com
Leninsky pr., 31, Moscow, 119991 Russia

E. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: phigoros@gmail.com
Leninsky pr., 31, Moscow, 119991 Russia

Bibliografia

  1. Mortimer R.J., Dyer A.L., Reynolds J.R. // Displays. 2006. V. 27. № 1. P. 2. https://doi.org/10.1016/j.displa.2005.03.003
  2. Mortimer R.J. // Annu. Rev. Mater. Res. 2011. V. 41. № 1. P. 241. https://doi.org/10.1146/annurev-matsci-062910-100344
  3. Granqvist C.G., Arvizu M.A., Qu H.Y. et al. // Surf. Coat. Technol. 2019. V. 357. № January 2019. P. 619. https://doi.org/10.1016/j.surfcoat.2018.10.048
  4. Granqvist C.G., Arvizu M.A., Bayrak Pehlivan et al. // Electrochim. Acta. 2018. V. 259. № January 2018. P. 1170. https://doi.org/10.1016/j.electacta.2017.11.169
  5. Granqvist C.G. // Thin Solid Films. 2014. V. 564. № August 2014. P. 1. https://doi.org/10.1016/j.tsf.2014.02.002
  6. Yang G., Zhang Y.M., Cai Y. et al. // Chem. Soc. Rev. 2020. V. 49. № 23. P. 8687. https://doi.org/10.1039/d0cs00317d
  7. Gu C., Jia A.B., Zhang Y.M. et al. // Chem. Rev. 2022. V. 122. № 18. P. 14679. https://doi.org/10.1021/acs.chemrev.1c01055
  8. Vlachopoulos N., Nissfolk J., Möller M. et al. // Electrochim. Acta. 2008. V. 53. № 11. P. 4065. https://doi.org/10.1016/j.electacta.2007.10.011
  9. Cheng K.C., Chen F.R., Kai J.J. // Solar Energy Materials and Solar Cells. 2006. V. 90. № 7–8. P. 1156. https://doi.org/10.1016/j.solmat.2005.07.006
  10. Scherer M.R.J., Li L., Cunha P.M.S. et al. // Advanced Materials. 2012. V. 24. № 9. P. 1217. https://doi.org/10.1002/adma.201104272
  11. Jin A., Chen W., Zhu Q. et al. // Electrochim. Acta. 2010. V. 55. № 22. P. 6408. https://doi.org/10.1016/j.electacta.2010.06.047
  12. Kim S., Taya M., Xu C. // J. Electrochem. Soc. 2009. V. 156. № 2. P. E40. https://doi.org/10.1149/1.3031978
  13. Vernardou D. // Coatings. 2017. V. 7. № 2. P. 24. https://doi.org/10.3390/coatings7020024
  14. Panagopoulou M., Vernardou D., Koudoumas E. et al. // Electrochim. Acta. 2019. V. 321. P. 134743. https://doi.org/10.1016/j.electacta.2019.134743
  15. Panagopoulou M., Vernardou D., Koudoumas E. et al. // Electrochim. Acta. 2017. V. 232. P. 54. https://doi.org/10.1016/j.electacta.2017.02.128
  16. Yao J., Li Y., Massé R.C. et al. // Energy Storage Mater. 2018. V. 11. P. 205. https://doi.org/10.1016/j.ensm.2017.10.014
  17. Yue Y., Liang H. // Adv. Energy Mater. 2017. V. 7. № 17. P. 1. https://doi.org/10.1002/aenm.201602545
  18. Liu M., Su B., Tang Y. et al. // Adv. Energy Mater. 2017. V. 7. № 23. P. 1700885. https://doi.org/10.1002/aenm.201700885
  19. Zanarini S., Di Lupo F., Bedini A. et al. // J. Mater. Chem. C. 2014. V. 2. № 42. P. 8854. https://doi.org/10.1039/c4tc01123f
  20. Panagopoulou M., Vernardou D., Koudoumas E. et al. // J. Phys. Chem. C. 2017. V. 121. № 1. P. 70. https://doi.org/10.1021/acs.jpcc.6b09018
  21. Lin T.C., Jheng B.J., Huang W.C. // Energies (Basel). 2021. V. 14. № 8. P. 1. https://doi.org/10.3390/en14082065
  22. Sonavane A.C., Inamdar A.I., Shinde P.S. et al. // J. Alloys Compd. 2010. V. 489. № 2. P. 667. https://doi.org/10.1016/j.jallcom.2009.09.146
  23. Yoshino T., Kobayashi K., Araki S. et al. // Solar Energy Materials and Solar Cells. 2012. V. 99. P. 43. https://doi.org/10.1016/j.solmat.2011.08.024
  24. Liu Q., Chen Q., Zhang Q. et al. // J. Mater. Chem. C. 2018. V. 6. № 3. P. 646. https://doi.org/10.1039/c7tc04696k
  25. Avendaño E., Berggren L., Niklasson G.A. et al. // Thin Solid Films. 2006. V. 496. № 1. P. 30. https://doi.org/10.1016/j.tsf.2005.08.183
  26. Niklasson G.A., Berggren L., Larsson A.L. // Solar Energy Materials and Solar Cells. 2004. V. 84. № 1–4. P. 315. https://doi.org/10.1016/j.solmat.2004.01.045
  27. Ataalla M., Afify A.S., Hassan M. et al. // J. Non. Cryst. Solids. 2018. V. 491. № March. P. 43. https://doi.org/10.1016/j.jnoncrysol.2018.03.050
  28. Chithambararaj A., Nandigana P., Kaleesh Kumar M. et al. // Appl. Surf. Sci. 2022. V. 582. № January. P. 152424. https://doi.org/10.1016/j.apsusc.2022.152424
  29. Wang W.Q., Yao Z.J., Wang X.L. et al. // J. Colloid Interface Sci. 2019. V. 535. P. 300. https://doi.org/10.1016/j.jcis.2018.10.006
  30. Wen R.T., Niklasson G.A., Granqvist C.G. // Solar Energy Materials and Solar Cells. 2014. V. 120. № January 2014. P. 151. https://doi.org/10.1016/j.solmat.2013.08.035
  31. Ćatić N., Wells L., Al Nahas K. et al. // Appl. Mater. Today. 2020. V. 19. № June 2020. P. 100618. https://doi.org/10.1016/j.apmt.2020.100618
  32. Serpelloni M., Cantù E., Borghetti M. et al. // Sensors (Switzerland). 2020. V. 20. № 3. P. 841. https://doi.org/10.3390/s20030841
  33. Wilkinson N.J., Smith M.A.A., Kay R.W. et al. // International Journal of Advanced Manufacturing Technology. 2019. V. 105. № 11. P. 4599. https://doi.org/10.1007/s00170-019-03438-2
  34. Agarwala S., Goh G.L., Yeong W.Y. // IOP Conf. Ser. Mater. Sci. Eng. 2017. V. 191. № 1. P. 012027. https://doi.org/10.1088/1757-899X/191/1/012027
  35. Cooper C., Hughes B. // 2020 Pan Pacific Microelectronics Symposium, Pan Pacific 2020. 2020. P. 170. https://doi.org/10.23919/PanPacific48324.2020.9059444
  36. Talledo A., Valdivia H., Benndorf C. // Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 2003. V. 21. № 4. P. 1494. https://doi.org/10.1116/1.1586282
  37. Zou C., Fan L., Chen R. et al. // CrystEngComm. 2012. V. 14. № 2. P. 626. https://doi.org/10.1039/c1ce06170d
  38. Khlayboonme S.T. // Results Phys. 2022. V. 42. № November 2022. P. 106000. https://doi.org/10.1016/j.rinp.2022.106000
  39. Khlayboonme S.T., Thedsakhulwong A. // Mater. Res. Express. 2022. V. 9. № 7. P. 076401. https://doi.org/10.1088/2053-1591/ac827a
  40. Asadov A., Mukhtar S., Gao W. // Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena. 2015. V. 33. № 4. P. 041802. https://doi.org/10.1116/1.4922628
  41. Gorobtsov P.Yu., Simonenko T.L., Simonenko N.P. et al. // Colloids and Interfaces. 2023. V. 7. № 1. P. 20. https://doi.org/10.3390/colloids7010020
  42. Costa C., Pinheiro C., Henriques I. et al. // ACS Appl. Mater. Interfaces. 2012. V. 4. № 10. P. 5266. https://doi.org/10.1021/am301213b
  43. Meyer J., Zilberberg K., Riedl T. et al. // J. Appl. Phys. 2011. V. 110. № 3. P. 033710. https://doi.org/10.1063/1.3611392
  44. Zhang H., Wang S., Sun X. et al. // J. Mater. Chem. C. 2017. V. 5. № 4. P. 817. https://doi.org/10.1039/c6tc04050k
  45. Choi S.G., Seok H.J., Rhee S. et al. // J. Alloys. Compd. 2021. V. 878. № October 2021. P. 160303. https://doi.org/10.1016/j.jallcom.2021.160303
  46. Peng H., Sun W., Li Y. et al. // Nano Res. 2016. V. 9. № 10. P. 2960. https://doi.org/10.1007/s12274-016-1181-z
  47. Gorobtsov P.Yu., Mokrushin A.S., Simonenko T.L. et al. // Materials. 2022. V. 15. № 21. P. 7837. https://doi.org/10.3390/ma15217837

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025