Нанокристаллические твердые растворы R1 – xScxF3 (R = La, Pr) со структурой тисонита: синтез и электропроводность

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Методом “мягкой химии” синтезированы однофазные нанокристаллические растворы R0.9Sc0.1F3 (R = La, Pr) в форме прозрачных ксерогелей тисонитовой структуры (пр. гр. \(P\bar {3}c1\)). Ионная проводимость приготовленных из них керамических образцов составила 4.5 × 10–4 и 2.1 × 10–3 См/см при 773 K для R = La и Pr соответственно. Энергия активации ионного переноса в керамических образцах на высокотемпературном участке электропроводности составила 0.43 (R = Pr) и 0.48 эВ (R = La), на низкотемпературном участке – 0.56 эВ (R = Pr). Установлено, что изовалентные замещения катионов La3+ (Pr3+) на Sc3+ в тисонитовых твердых растворах R0.9Sc0.1F3 приводят к снижению проводимости керамических электролитов в 3–4 раза.

Об авторах

И. И. Бучинская

Институт кристаллографии им. А.В. Шубникова ФНИЦ “Кристаллография и фотоника” РАН

Email: buchinskayaii@gmail.com
Россия, 119333, Москва, Ленинский пр-т, 59

Н. И. Сорокин

Институт кристаллографии им. А.В. Шубникова ФНИЦ “Кристаллография и фотоника” РАН

Автор, ответственный за переписку.
Email: buchinskayaii@gmail.com
Россия, 119333, Москва, Ленинский пр-т, 59

Список литературы

  1. Trnovcová V., Garashina L.S., Škubla A. et al. // Solid State Ionics. 2003. V. 157. P. 195.
  2. Привалов А.Ф., Мурин И.В. // ФТТ. 1999. Т. 41. № 9. С. 1616.
  3. Сорокин Н.И., Соболев Б.П., Кривандина Е.А. и др. // Кристаллография. 2015. Т. 60. № 1. С. 1239.
  4. Сорокин Н.И., Гребенев В.В., Каримов Д.Н. // ФТТ. 2021. Т. 63. № 9. С. 1376.
  5. Мурин И.В. // Изв. СО АН СССР. Сер. хим. наук. 1984. № 1. С. 53.
  6. Сорокин Н.И., Соболев Б.П. // Кристаллография. 1994. Т. 39. № 1. С. 114.
  7. Сорокин Н.И., Кривандина Е.А., Жмурова З.И. и др. // Кристаллография. 2000. Т. 45. № 4. С. 759.
  8. Гулина Л.Б. Синтез твердофазных соединений и наноматериалов с участием химических реакций на границе раздела раствор–газ. Дис. … д-ра хим. наук. СПб.: Изд-во СПбУ, 2022. 313 с.
  9. Gulina L.B., Privalov A.F., Weigler M. et al. // Appl. Magn. Reson. 2020. V. 51. P. 1691. https://doi.org/10.1007/s00723-020-01247-5
  10. Мурин И.В., Чернов С.В. // Изв. АН СССР. Неорган. материалы. 1982. Т. 18. № 1. С. 168.
  11. Сорокин Н.И., Бучинская И.И. // Кристаллография. 2022. Т. 67. № 6. С. 971. https://doi.org/10.31857/S0023476122060248
  12. Сорокин Н.И. // ФТТ. 2022. Т. 64. № 7. С. 847. https://doi.org/1021883/FTТ.2022.07.52571.328
  13. Greis O., Cader M.S.R. // Termochim. Acta. 1985. V. 87. № 1. P. 145.
  14. Spedding F.H., Beaudry B.J., Henderson D.C. et al. // J. Chem. Phys. 1974. V. 60. № 4. P. 1578.
  15. Кузнецов С.В., Осико В.В., Ткаченко Е.А., Федоров П.П. // Успехи химии. 2006. Т. 75. № 12. С. 1193.
  16. Кузнецов С.В., Федоров П.П., Воронов В.В. и др. // Журн. неорган. химии. 2010. Т. 55. № 4. С. 536.
  17. Маякова М.Н., Кузнецов С.В., Федоров П.П. и др. // Неорган. материалы. 2013. Т. 49. № 11. С. 1242.
  18. Karbowiak M., Mech A., Bednarkiewicz A. et al. // J. Phys. Chem. Solids. 2005. V. 66. № 6. P. 1008.
  19. Susumu Y., Kim J., Takashima M. // Solid State Sci. 2002. V. 4. P. 1481. https://doi.org/10.1016/S1293-2558(02)00039-0
  20. Petricek V., Dusek M., Palatinus L. // Z. Kristallogr. – Cryst. Mat. 2014. B. 229. S. 345.
  21. Болдырев В.В. Экспериментальные методы в механохимии твердых неорганических веществ. Новосибирск: Наука, 1983. 65 с.
  22. Маякова М.Н. Фазообразование при синтезе неорганических нанофторидов щелочноземельных и редкоземельных элементов из водных растворов. Дис. … канд хим. наук. М., 2019. 141 с.
  23. Сорокин Н.И., Смирнов А.Н., Федоров П.П., Соболев Б.П. // Электрохимия. 2009. Т. 45. № 5. С. 641.
  24. Сорокин Н.И., Фоминых М.В., Кривандина Е.А. и др. // Кристаллография. 1996. Т. 41. № 2. С. 310.
  25. Алиев А.Э. // Электрохимия. 1990. Т. 26. № 1. С. 79.
  26. Dieudonne B., Chable J., Body M. et al. // Dalton Trans. 2017. V. 46. P. 3761. https://doi.org/10.1039/c6dt04714a
  27. Mori K., Morita Y., Saito T. et al. // J. Phys. Chem. C. 2020. V. 124. P. 18452. https://doi.org/10.1021/acs.jpcc0c05217
  28. Breuer S., Lunghammer S., Kiesl A., Wilkening M. // J. Mater. Sci. 2018. V. 53. P. 13669. https://doi.org/10.1007/s10853-018-2361-x
  29. Сорокин Н.И., Фоминых М.В., Кривандина Е.А. и др. // ФТТ. 1998. Т. 40. № 4. С. 658.
  30. Chable J., Diendonne B., Body M. et al. // Dalton Trans. 2015. https://doi.org/10.1039/c5dt02321a
  31. Breuer S., Gombotz M., Pregartner V. et al. // Energy Storage Mater. 2019. V. 16. P. 481. https://doi.org/10.1016/j.ensm.2018.10.010
  32. Bhatia H., Thien D.T., Pohl H.P. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. P. 23707.
  33. Roos A., Van de Pol F.C.M., Keim R. et al. // Solid State Ionics. 1984. V. 13. P. 191.
  34. Alattar A.M., Drexler M., Twej W.A. et al. // Photonics and Nanostructures – Fundamentals and Applications. 2018. V. 30. P. 65. https://doi.org/10.1016/j.photonics.2018.04.004

Дополнительные файлы


© И.И. Бучинская, Н.И. Сорокин, 2023