ON THE CONSTRUCTION OF A GRADIENT QUADRATIC OPTIMIZATION METHOD, OPTIMAL IN TERMS OF MINIMIZING THE DISTANCE TO THE EXACT SOLUTION
- Авторлар: Pletnev N.V1
-
Мекемелер:
- MIPT
- Шығарылым: Том 65, № 10 (2025)
- Беттер: 1625-1648
- Бөлім: Optimal control
- URL: https://rjmseer.com/0044-4669/article/view/695945
- DOI: https://doi.org/10.31857/S0044466925100027
- ID: 695945
Дәйексөз келтіру
Аннотация
Quadratic optimization problems in Hilbert space often arise when solving ill-posed problems for differential equations. At the same time, the target value of the functional is known. In addition, the functional structure makes it possible to calculate the gradient by solving correct problems, which allows applying first-order methods. This article is devoted to the construction of the m-moment method of minimal errors, an effective method that minimizes the distance to an accurate solution. The convergence and optimality of the constructed method are proved, as well as the impossibility of uniform convergence of methods operating in Krylov subspaces. Numerical experiments are being conducted to demonstrate the effectiveness of applying the m-moment minimum error method to solving various incorrect problems: the initial boundary value problem for the Helmholtz equation, the retrospective Cauchy problem for the heat equation, and the inverse thermoacoustics problem. Куа.
Әдебиет тізімі
- Поляк Б.Т. Минимизация негладких функционалов // Ж. вычисл. матем. и матем. физ. 1969. Т. 9. № 3. С. 509–521.
- Devanathan N., Boyd S. Polyak minorant method for convex optimization. e-print, 2024. URL: https://arxiv.org/abs/2310.07922.
- Goujaud B., Taylor A., Dieuleveut A. Quadratic minimization: from conjugate gradient to an adaptive Heavy-ball method with Polyak step-sizes. e-print, 2022. URL: https://arxiv.org/abs/2210.06367.
- Kabanikhin S.I. Inverse and ill-posed problems: theory and applications. Berlin: Walter de Gruyter GmbH & Co, 2012. 459 p. ISBN 978-3-11-022400-9.
- Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М.: Физматлит, 2004. ISBN 5-9221-0266-4.
- Павлин Н.В., Двуреченский П.Е., Гасников А.В. Применение градиентных методов оптимизации для решения задачи Коши для уравнения Гельмгольца // Компьют. исслед. и моделирование. 2022. Т. 14. № 2. С. 417–444.
- Павлин Н.В., Матюхин В.В. О модификации метода покомпонентного спуска для решения некоторых обратных задач математической физики // Компьют. исслед. и моделирование. 2023. Т. 15. № 2. С. 301–316.
- Кабанихин С.Н., Шишленин М.А., Криворотько О.И. Оптимизационный метод решения обратной задачи термоакустики // Сиб. электрон. матем. изв. 2011. Т. 8. С. 263–292.
Қосымша файлдар



