TURBULENT POISEUILLE FLOW IN A CIRCULAR TUBE AS A SUPERPOSITION OF STEADY SOLUTION AND PERTURBATIONS
- 作者: Zametayev V.B1,2, Skorokhodov S.L2
-
隶属关系:
- Central Aerohydrodynamic Institute (TsAGI)
- Federal Research Center "Computer Science and Control", RAS
- 期: 卷 65, 编号 10 (2025)
- 页面: 1707-1719
- 栏目: Mathematical physics
- URL: https://rjmseer.com/0044-4669/article/view/695950
- DOI: https://doi.org/10.31857/S0044466925100074
- ID: 695950
如何引用文章
详细
The turbulent flow of a viscous incompressible fluid in a circular tube caused by a pressure drop is investigated. It is assumed that the characteristic Reynolds number, calculated from the maximum velocity of the averaged flow and the length of the pipe, is large, and the radius of the pipe is small compared to its length. To find solutions to the Navier–Stokes equations, an asymptotic method of many scales is used, in which velocities and pressures are represented as series consisting of the sum of steady and perturbed terms, instead of the traditional decomposition of the solution into time-averaged values and their fluctuations. The paper finds a viscous self-sustaining steady flow that occurs in a pipe against the background of fast turbulent fluctuations. The connection of such a solution with Prigogine's theory of dissipative structures for open nonlinear systems of parabolic type is indicated. A solution has been found for the radial steady velocity, which describes the self-induced outflow of fluid from the core of the flow to a solid/permeable wall. As a result, solutions for the longitudinal velocity have been obtained that differ markedly from the laminar regimes. A qualitative comparison with well-known experiments and works on the direct numerical simulation (DNS) has been performed.
作者简介
V. Zametayev
Central Aerohydrodynamic Institute (TsAGI); Federal Research Center "Computer Science and Control", RAS
Email: zametayev.vb@mipr.ru
Zhukovsky, Russia; Moscow, Russia
S. Skorokhodov
Federal Research Center "Computer Science and Control", RAS
Email: sskorokhodov@gmail.com
Moscow, Russia
参考
- Гленсдорф П., Пригожин И. Термодинамическая теория структуры, устойчивости и флуктуаций. М.: Мир, 1973. 350 с.
- Мищенко Е.Ф., Садовничий В.А., Колесов А.Ю., Розов Н.Х. Автоволновые процессы в нелинейных средах с диффузией. М.: Физматлит, 2005. 430 с.
- Корнилов В.И. Пространственные пристенные турбулентные течения в угловых конфигурациях. 2-е изд., перераб. и доп. / отв. ред. В.М. Фомин; Рос. акад. наук. Сиб. отд., Ин-т теор. и прикл. механики. Новосибирск: Изд-во СО РАН, 2013. 431 с.
- Kim J. Progress in pipe and channel flow turbulence, 1961–2011 // J. of Turbulence. 2012.13. https://doi.org/10.1080/14685248.2012.726358
- Graham M.D., Floryan D. Exact coherent states and the nonlinear dynamics of wall-bounded turbulent flows // Ann. Rev. Fluid Mech. 2021. V. 53. P. 227–253; https://doi.org/10.1146/annurev-fluid-051820-020223
- Hall P., Smith F. The nonlinear interaction of Tollmien–Schlichting waves and Taylor–Gortler vortices in curved channel flows // Proc. R. Soc. Lond. A. 1988. V. 417. P. 255–282.
- Hall P., Smith F. Nonlinear a Tollmien–Schlichting/vortex interaction in boundary layers // Eur. J. Mech. B/Fluids. 1989. V. 8 (3). P. 179–205.
- Hall P., Smith F. On strongly nonlinear vortex/wave interactions in boundary-layer transition // J. Fluid Mech. 1991. V. 227. P. 641–666.
- Waleffe F. Hydrodynamic stability and turbulence: beyond transients to a self-sustaining process // Stud. Appl. Math. 1995. V. 95 (3). P. 319–343.
- Waleffe F. On a self-sustaining process in shear flows // Phys. Fluids. 1997. V. 9 (4). P. 883–900.
- Ruban A.I., Gajjar S.B., Walton A.G. Fluid Dynamics. Part 4: Hydrodynamic stability theory. Oxford Univ. Press, 2023. P. 339.
- Колмогоров А.Н. Локальная структура турбулентности в несжимаемой жидкости при очень больших числах Рейнольдса // Докл. AH CCCP. 1941. Т. 30. № 4. С. 299–303.
- Zametaev V.B., Gorbushin A.R. Evolution of vortices in 2D boundary layer and in the Couette flow // AIP Conf. Proceed. 2016. 1770. 030044.
- Zametaev V.B., Gorbushin A.R., Lipatov I.I. Steady secondary flow in a turbulent mixing layer // Inter. J. Heat and Mass Transfer. 2019. V. 132. P. 655–661.
- Заметаев В.Б. Моделирование турбулентного течения Пуазейля–Кутта в плоском канале асимптотическими методами // Ж. вычисл. матем. и матем. физ. 2020. Т. 60. № 9. С. 1576–1586.
- Zametaev V.B., Lipatov I.I. Energy exchange in a compressible turbulent mixing layer // J. Turbulence. 2021. V. 22 (1). P. 48–77.
- Горбушин А.Р., Заметаев В.Б. Асимптотический анализ вязких пульсаций в турбулентных пограничных слоях // Изв. РАН МЖГ. 2018. Т. 53. № 1. С. 9–20.
- Горбушин А.Р., Заметаев В.Б., Липатов И.И. Стационарное вторичное течение в двухмерной турбулентной свободной струе // Изв. РАН МЖГ. 2019. Т. 54. № 2. С. 1–13.
- Gorbushin A., Osipova S., Zametaev V. Mean parameters of an incompressible turbulent boundary layer on the wind tunnel wall at very high Reynolds numbers // Flow, Turbulence and Combustion. 2021. V. 107(1). P. 31–50.
- Горбушин А.Р., Заметаев В.Б., Липатов И.И., Федотов М.А., Хохлов А.А. Самоиндуцированный подсос жидкости в турбулентный пограничный слой на проницаемой поверхности // Ж. вычисл. матем. и матем. физ. 2022. Т. 62. № 10. С. 1707–1722.
- Zametaev V.B. Attached two-dimensional coherent vortices in a turbulent boundary layer // Phys. Fluids. 1 July. 2024. V. 36 (7). P. 075157.
- Zametaev V.B., Skorokhodov S.L. Steady secondary flow in a turbulent boundary layer past a slender axisymmetric body // J. Turbulence. 2025. V. 26(1). P. 1–16.
- Reynolds O. On the dynamic theory of incompressible viscous fluids and the determination of the criterion // Phil. Trans. Roy. Soc. 1895. 186. A 123.
- Reichardt H. Messungen turbulenter Schwankungen // Naturwissenschaften. 1938. P. 404.
- Klebanoff P.S. Characteristics of turbulence in a boundary layer with zero pressure gradient // NACA Rep. 1955. 1247.
- Schubauer G.B., Klebanoff P.S. Contributions on the mechanics of boundary layer transition // NACA. 1955. TN. 3489.
- Ming Yu, Ceci A., Pirozzoli S. Reynolds number effects and outer similarity of pressure fluctuations in turbulent pipe flow // Inter. J. of Heat and Fluid Flow. 2022. V. 96. P. 108998; https://doi.org/10.1016/j.ijheatfluidflow.2022.108998.
- Jimenez J., Hoyas S., Simens M.P., Mizuno Y. Turbulent boundary layers and channels at moderate Reynolds numbers // J. Fluid Mech. 2010. V. 657. P. 335–360.
补充文件



