New Manganese(II) Coordination Compounds with 4-{[(1H-Pyrrol-2-yl)methylene]amino}-4H-1,2,4-triazole
- 作者: Bovkunov A.A.1, Bazhina E.S.1, Shmelev M.A.1, Gogoleva N.V.1, Anisimov A.A.2, Kottsov S.Y.1, Babeshkin K.A.1, Efimov N.N.1, Metlin M.T.3, Taydakov I.V.1, Fetisov L.N.4, Svyatogorova A.E.4, Zubenko A.A.4, Kiskin M.A.1, Eremenko I.L.1
-
隶属关系:
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- HSE University
- Lebedev Physical Institute, Russian Academy of Sciences
- North-Caucasian Zonal Scientific Research Veterinary Institute, Federal Rostov Agricultural Research Centre
- 期: 卷 51, 编号 7 (2025)
- 页面: 464-483
- 栏目: Articles
- URL: https://rjmseer.com/0132-344X/article/view/688159
- DOI: https://doi.org/10.31857/S0132344X25070056
- EDN: https://elibrary.ru/KPPBFV
- ID: 688159
如何引用文章
详细
The reaction of manganese(II) chloride with the azomethine ligand 4-{[(1H-pyrrol-2-yl)methylene]amino}-4H-1,2,4-triazole (HPyrtrz) yielded crystals of the 1D-polymeric compound [MnII(HPyrtrz)(H2O)Cl2]n (I). The addition of the co-ligand 1,10-phenanthroline (phen) to the synthesis of I was found to led to the sequential crystallization of two products, namely, the 1D-polymeric compound [MnII(Phen)Cl2]n (II) and the mononuclear complex [MnII(phen)2Cl2] HPyrtrz (II). Complex III was found to be isolated as a single product in the reaction of compound I with phen or in the reaction of the known complex [MnII(Phen)2Cl2] with HPyrtrz, respectively. The crystal structures of compounds I-III were determined by single-crystal X-ray diffraction (CIF files CCDC № 2339139 (I), № 2344064 (II), № 2339140 (III)). For I and III, antimicrobial activity was studied against E. coli and S. aureus bacterial strains and Penicillium italicum Wehmer mold. According to the temperature dependence of magnetic susceptibility, antiferromagnetic exchange interactions between Mn2+ ions (J = –2.69 cm–1) are realized in compound I. Spectral-luminescent studies showed that HPyrtrz, I and III exhibit blue luminescence in the solid phase.
全文:

作者简介
A. Bovkunov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: bazhina@igic.ras.ru
俄罗斯联邦, Moscow
E. Bazhina
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: bazhina@igic.ras.ru
俄罗斯联邦, Moscow
M. Shmelev
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: bazhina@igic.ras.ru
俄罗斯联邦, Moscow
N. Gogoleva
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: bazhina@igic.ras.ru
俄罗斯联邦, Moscow
A. Anisimov
HSE University
Email: bazhina@igic.ras.ru
俄罗斯联邦, Moscow
S. Kottsov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: bazhina@igic.ras.ru
俄罗斯联邦, Moscow
K. Babeshkin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: bazhina@igic.ras.ru
俄罗斯联邦, Moscow
N. Efimov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: bazhina@igic.ras.ru
俄罗斯联邦, Moscow
M. Metlin
Lebedev Physical Institute, Russian Academy of Sciences
Email: bazhina@igic.ras.ru
俄罗斯联邦, Moscow
I. Taydakov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: bazhina@igic.ras.ru
俄罗斯联邦, Moscow
L. Fetisov
North-Caucasian Zonal Scientific Research Veterinary Institute, Federal Rostov Agricultural Research Centre
Email: bazhina@igic.ras.ru
俄罗斯联邦, Novocherkassk
A. Svyatogorova
North-Caucasian Zonal Scientific Research Veterinary Institute, Federal Rostov Agricultural Research Centre
Email: bazhina@igic.ras.ru
俄罗斯联邦, Novocherkassk
A. Zubenko
North-Caucasian Zonal Scientific Research Veterinary Institute, Federal Rostov Agricultural Research Centre
Email: bazhina@igic.ras.ru
俄罗斯联邦, Novocherkassk
M. Kiskin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: bazhina@igic.ras.ru
俄罗斯联邦, Moscow
I. Eremenko
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: bazhina@igic.ras.ru
俄罗斯联邦, Moscow
参考
- Haque S., Tripathy S., Patra C.R. // Nanoscale. 2021. V. 13. P. 16405.
- Ali B., Iqbal M.A. // ChemistrySelect. 2017. V. 2. P. 1586.
- Cheng Y.-Z., Lv L.-L., Zhang L.-L. et al. // J. Mol. Struct. 2021. V. 1228 P. 129745.
- Loginova N.V., Harbatsevich H.I., Osipovich N.P. et al. // Curr. Med. Сhem. 2020. V. 27. P. 5213.
- Freeland-Graves J.H., Bose T., Karbassian A. // Metallotherapeutic drugs and metal-based diagnostic agents: the use of metals in medicine / eds. M. Gielen, E.R.T. Tiekink. Chichester: John Wiley & Sons, Ltd, 2005. P. 159.
- Kongot M., Reddy D. S., Singh V. et al. // Spectroc. Acta 2020. V. 231. P. 118123.
- Saleem S., Parveen B., Abbas K. et al. // Appl. Organomet. Chem. 2023. V. 37. P. e7234.
- Belaid S., Landreau A., Djebbar S. et al. // J. Inorg. Biochem. 2008. V. 102. P. 63.
- Saleh M.G.A., El-Sayed W.A., Zayed E.M. et al. // Appl. Organomet. Chem. 2024. V. 38. Art. e7397.
- Kubens L., Truong K.-N., Lehmann C.W. et al. // Eur. J. Org. Chem. 2023. V. 29. P. e202301721.
- Seeger M., Otto W., Flick W. et al. // Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co., 2012. P. 41.
- Zheng R., Guo J., Cai X. et al. // Colloids Surf. B. 2022. V. 213. P. 112432.
- Henoumont C., Devreux M., Laurent S. // Molecules. 2023. V. 28. P. 7275.
- Cloyd R.A., Koren S.A., Abisambra J.F. // Front. Aging Neurosci. 2018. V. 10. P. 403.
- Silva A.C., Lee J.H., Aoki I., Koretsky A.P. // NMR Biomed. 2004. V. 17. P. 532.
- Gao C., Zhang X., Liang W. et al. // Inorg. Chem. Commun. 2023. V. 155. P. 111031.
- Qin Y., She P., Huang X. et al. // Coord. Chem. Rev. 2020. V. 416. P. 213331.
- Давыдова М.П., Багрянская И.Ю., Рахманова М.И. и др. // Журн. общ. химии. 2023. Т. 93. № 2. С. 266.
- Deswal Y., Asija S., Kumar D. et al. // Res. Chem. Intermed. 2022. V. 48. P. 703..
- Ivanov A.V., Shcherbakova V.S., Sobenina L.N. // Russ. Chem. Rev. 2023. V. 92. P. RCR5090.
- da Forezi L.S.M., Lima C.G.S., Amaral A.A.P. et al. // Chem. Record. 2021. V. 21. P. 2782.
- Mateev E., Georgieva M., Zlatkov A. // J. Pharm. Pharm. Sci. 2022. V. 25. P. 24.
- Moneo-Corcuera A., Pato-Doldan B., Sánchez-Molina I. et al. // Molecules. 2021. V. 26. P. 6020.
- Askew J.H., Shepherd H.J. // Dalton Trans. 2020. V. 49. P. 2966.
- Petrenko Y.P., Piasta K., Khomenko D.M. et al. // RSC Adv. 2021. V. 11. P. 23442.
- Gusev A., Kiskin M., Braga E. et al. // Dalton Trans. 2025. V. 54. P. 3335.
- Mahesh K., Karpagam S., Pandian K. // Top. Curr. Chem. 2019. V. 377. P. 12.
- Scattergood P.A., Sinopoli A., Elliott P.I.P. // Coord. Chem. Rev. 2017. V. 350. P. 136.
- Li A.-M., Hochdörffer T., Wolny J.A. et al. // Magnetochemistry. 2018. V. 4. P.34.
- Dong Y.-N., Xue J.-P., Yu M., Tao J. // Inorg. Chem. Commun. 2022. V. 140. P. 109475.
- Čechová D., Martišková A., Moncol J. // Acta Chim. Slovaca. 2014. V. 7. P. 15.
- TOPAS Software. Version 4.2. Karlsruhe: Bruker AXS. 2009.
- Neese F. // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022. V. 12. P. e1606.
- Neese F., Wennmohs F., Becker U., Riplinger C. // JCP. 2020. V. 152. P. 224108.
- Adamo C., Barone V. // JCP. 1999. V. 110. P. 6158.
- Weigend F., Ahlrichs R. // PCCP. 2005. V. 7. P. 3297.
- Barone V., Cossi M. // J. Phys. Chem. A. 1998. V. 102. P. 1995.
- Cammi R., Mennucci B., Tomasi J. // J. Phys. Chem. A. 2000. V. 104. P. 5631.
- Hirata S., Head-Gordon M. // Chem. Phys. Lett. 1999. V. 314. P. 291.
- Burlov A.S., Vlasenko V.G., Koshchienko Yu.V. et al. // Polyhedron. 2018. V. 154. P. 65.
- SMART (control) and SAINT (integration). Software. Version 5.0. Madison (WI, USA): Bruker AXS Inc. 1997.
- Sheldrick G.M. SADABS. Madison (WI, USA): Bruker AXS Inc. 1997.
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 3397.
- Lu X.-M., Li P.-Z., Wang X.-T. et al. // Polyhedron. 2008. V. 27. P. 3669.
- Majumder A., Westerhausen M., Kneifel A.N. et al. // Inorg. Chim. Acta. 2006. V. 359. P. 3841.
- Domide D., Hübner O., Behrens S. et al. // Eur. J. Inorg. Chem. 2011. V. 2011. P. 1387.
- Lubben M., Meetsma A., Feringa B. L. // Inorg. Chim. Acta. 1995. V. 230. P. 169.
- Wu J.-Z., Tanase S., Bouwman E. et al. // Inorg. Chim. Acta. 2003. V. 351. P. 278.
- Richards P.M., Quinn R.K., Morosin B. // J. Chem. Phys. 1973. V. 59. P. 4474.
- Yang E., Zhang J., Chen Y.-B. et al. // Acta Crystallogr. E. 2004. V. 60. Art. m390.
- Saha U., Dutta D., Bauzá A. et al. // Polyhedron. 2019. V. 159. P. 387.
- Yang Q., Nie J.-J., Xu D.-J. // Acta Crystallogr. E. 2008. V. 64. Art. m757.
- Boro M., Banik S., Gomila R.M. et al. // Inorganics. 2024. V. 12. P. 139.
- Dey R., Ghoshal D. // Polyhedron. 2012. V. 34. P. 24.
- Ракитин Ю.В., Калинников В.Т. Современная магнетохимия. СПб.: Наука, 1994. 276 c.
- Chilton N.F., Anderson R.P., Turner L.D. et al. // J. Comput. Chem. 2013. V. 34. P. 1164.
- Vos G., Haasnoot J.G., Verschoor G.C. et al. // Inorg. Chim. Acta. 1985. V. 105. P. 31.
- Meng H., Zhu W., Li F. et al. // Laser Photonics Rev. 2021. V. 15. P. 2100309.
- Tao P., Liu S.-J., Wong W.-Y. // Adv. Opt. Mater. 2020. V. 8. P. 2000985.
- Ciuba M.A., Levitus M. // ChemPhysChem. 2013. V. 14. P. 3495.
- Davydova M.P., Bauer I.A., Brel V.K. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. P. 695.
- Armaroli N., Cola L.D., Balzani V. et al. // Faraday Trans. 1992. V. 88. P. 553.
- Accorsi G., Listorti A., Yoosaf K., Armaroli N. // Chem. Soc. Rev. 2009. V. 38. P. 1690.
- de Souza Junior M.V., de Oliveira Neto J.G., Viana J. R. et al. // Vib. Spectrosc. 2024. V. 133. P. 103710.
补充文件
