Abstract
In this study, the specific features of the kinetics of singlet fission (SF)—i.e., spontaneous splitting of the excited singlet state into a pair of triplet (T) excitons (TT-pair)—in anisotropic molecular crystals are analyzed in detail. These features are known to be primarily determined by the TT-annihilation of the created TT-pairs (migrating in the crystals). In our analysis, the kinetics of annihilation-affected SF processes is described in the two-state model (TSM), in which the interaction of migrating T-excitons is associated with transitions between two kinetic states of TT-pairs: [TT]-state of coupled TT-pairs and [T+T]-state of freely migrating T-excitons. The TSM makes it possible to represent the effects of migration and interaction on SF-kinetics in terms of the lattice Green’s functions, for which the analytical formulas are obtained in this study. The TSM is applied to the analysis of SF-kinetics in the rubrene single crystals recently measured in a wide time range. The analysis provides detailed information on some characteristic kinetic properties of SF processes in anisotropic crystals. It is shown, for example, that the formation of the [TT]-state in the SF process results in some distortion of the shape of the SF kinetic dependence at short times (of the order of the primary-stage time of SF kinetics). Is also demonstrated that the anisotropy of T-exciton migration manifests itself in some characteristic features of SF kinetics at long times.