Энергии связи экситона в производных бифенила с ферроценильными и фторсодержащими гермильными заместителями

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Для повышения КПД органических фотовольтаических устройств необходим поиск новых перспективных соединений, обеспечивающих эффективное разделение зарядов при поглощении в оптической области спектра. В качестве таких соединений в настоящей работе исследованы производные бифенила с ферроценильными и фторсодержащими гермильными заместителями. Методами DFT и TD-DFT (B3LYP, CAM-B3LYP, PBE0, wB97XD) исследованы структуры и энергии возбужденных состояний этих производных и оценены энергии связи экситона в материалах на их основе в вакууме и конденсированной среде. Для ряда соединений полученные значения энергий связи экситона близки к нулю, а в отдельном случае даже меньше нуля, что указывает на перспективность их синтеза и использования.

Полный текст

Доступ закрыт

Об авторах

Д. А. Алёшин

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Автор, ответственный за переписку.
Email: aleshindan2@gmail.com
Россия, Нижний Новгород

Н. Л. Ермолаев

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Email: aleshindan2@gmail.com
Россия, Нижний Новгород

С. В. Пантелеев

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Email: aleshindan2@gmail.com
Россия, Нижний Новгород

Е. В. Сулейманов

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Email: aleshindan2@gmail.com
Россия, Нижний Новгород

С. К. Игнатов

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Email: aleshindan2@gmail.com
Россия, Нижний Новгород

Список литературы

  1. Миличко В.А., Шалин А.С., Мухин И.С. и др. // Успехи физ. наук. 2016. Т. 186. № 8. С. 801. https://doi.org/10.3367/UFNr.2016.02.037703
  2. Scharber M.C. // Adv. Mater. 2016. V. 28. № 10. P. 1994. https://doi.org/10.1002/adma.201504914
  3. Hou J., Inganäs O., Friend R.H., Gao F. // Nat. Mater. 2018. V. 17. № 2. P. 119. https://doi.org/10.1038/nmat5063
  4. Zhang G., Lin F.R., Qi F. et al. // Chem. Rev. 2022. V. 122. № 18. P. 14180. https://doi.org/10.1021/acs.chemrev.1c00955
  5. Price M.B., Hume P.A., Ilina A. et al. // Nat. Commun. 2022. V. 13. № 1. P. 2827. https://doi.org/10.1038/s41467-022-30127-8
  6. Zhang X.-X., Yu X.-F., Xiao B. // J. Phys. Chem. A. 2023. V. 127. № 44. P. 9291. https://doi.org/10.1021/acs.jpca.3c06000
  7. Solak E.K., Irmak E. // RSC Adv. 2023. V. 13. № 18. P. 12244. https://doi.org/10.1039/D3RA01454A
  8. Al-Taher A.H., Al-Badry L.F., Semiromi E.H. // Russ. J. Phys. Chem. B. 2021. V. 15. № S1. P. S1. https://doi.org/10.1134/S1990793121090025
  9. Yu Q.-C., Fu W.-F., Wan J.-H. et al. // ACS Appl. Mater. Interfaces. 2014. V. 6. № 8. P. 5798. https://doi.org/10.1021/am5006223
  10. Brédas J.-L., Norton J.E., Cornil J. et al. // Acc. Chem. Res. 2009. V. 42. № 11. P. 1691. https://doi.org/10.1021/ar900099h
  11. Lemaur V., Steel M., Beljonne D. et al. // J. Amer. Chem. Soc. 2005. V. 127. № 16. P. 6077. https://doi.org/10.1021/ja042390l
  12. Kaake L.G., Jasieniak J.J., Bakus R.C. et al. // Ibid. 2012. V. 134. № 48. P. 19828. https://doi.org/10.1021/ja308949m
  13. Vandewal K., Mertens S., Benduhn J. et al. // J. Phys. Chem. Lett. 2020. V. 11. № 1. P. 129. https://doi.org/10.1021/acs.jpclett.9b02719
  14. Лукин Л.В. // Хим. физика. 2023. Т. 42. № 12. С. 54. https://doi.org/10.31857/S0207401X23120075
  15. Kronik L., Neaton J.B. // Annu. Rev. Phys. Chem. 2016. V. 67. № 1. P. 587. https://doi.org/10.1146/annurev-physchem-040214- 121351
  16. Dimitriev O.P. // Chem. Rev. 2022. V. 122. № 9. P. 8487. https://doi.org/10.1021/acs.chemrev.1c00648
  17. Горохов В.В., Нокс П.П., Корватовский Б.Н. и др. // Хим. физика. 2023. Т. 42. № 6. С. 63. https://doi.org/10.31857/S0207401X23060055
  18. Черепанов Д.А., Милановский Г.Е., Айбуш А.В. и др. // Хим. физика. 2023. Т. 42. № 6. С. 77. https://doi.org/10.31857/S0207401X23060031
  19. Базлов С.В., Феськов С.В., Иванов А.И. // Хим. физика. 2017. Т. 36. № 3. С. 39. https://doi.org/10.7868/S0207401X17030025
  20. Черепанов Д.А., Милановский Г.Е., Надточенко В.А. и др. // Хим. физика. 2023. Т. 42. № 6. С. 88. https://doi.org/10.31857/S0207401X23060043
  21. Ermolaev N.L., Lenin I.V., Fukin G.K. et al. // J. Organomet. Chem. 2015. V. 797. P. 83. https://doi.org/10.1016/j.jorganchem.2015.07.027
  22. Ermolaev N.L., Fukin G.K., Shavyrin A.S. et al. // Ibid. 2023. V. 983. P. 122535. https://doi.org/10.1016/j.jorganchem.2022.122535
  23. Chuhmanov E.P., Ermolaev N.L., Plakhutin B.N., Ignatov S.K. // Comput. Theor. Chem. 2018. V. 1123. P. 50. https://doi.org/10.1016/j.comptc.2017.11.007
  24. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision A.01. Wallingford, CT: Gaussian, Inc., 2009.
  25. Tomasi J., Mennucci B., Cammi R. // Chem. Rev. 2005. V. 105. № 8. P. 2999. https://doi.org/10.1021/cr9904009
  26. Lu T., Chen F. // J. Comput. Chem. 2012. V. 33. № 5. P. 580. https://doi.org/10.1002/jcc.22885
  27. Gregg B.A. // J. Phys. Chem. B. 2003. V. 107. № 20. P. 4688. https://doi.org/10.1021/jp022507x
  28. Hains A.W., Liang Z., Woodhouse M.A. et al. // Chem. Rev. 2010. V. 110. № 11. P. 6689. https://doi.org/10.1021/cr9002984
  29. Sun H., Hu Z., Zhong C. et al. // J. Phys. Chem. C. 2016. V. 120. № 15. P. 8048. https://doi.org/10.1021/acs.jpcc.6b01975
  30. Benatto L., Koehler M. // Ibid. 2019. V. 123. № 11. P. 6395. https://doi.org/10.1021/acs.jpcc.8b12261
  31. Zhu L., Yi Y., Wei Z. // J. Phys. Chem. C. 2018. V. 122. № 39. P. 22309. https://doi.org/10.1021/acs.jpcc.8b07197
  32. Bredas J.-L. // Mater. Horiz. 2014. V. 1. № 1. P. 17. https://doi.org/10.1039/C3MH00098B
  33. Zhu L., Zhang J., Guo Y. et al. // Angew. Chem. 2021. V. 133. № 28. P. 15476. https://doi.org/10.1002/ange.202105156

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Структурные формулы изучаемых соединений.

Скачать (65KB)
3. Рис. 2. Схема, поясняющая определение энергии связи экситона EB: S0 и S1 — основное и первое возбужденное (синглетное) состояние нейтральной молекулы, EIP и EEA — потенциал ионизации и сродство к электрону, Efund и Eopt — фундаментальная и оптическая щели.

Скачать (57KB)
4. Рис. 3. Оптимизированная геометрия нейтральных структур (B3LYP/6-31G(d,p)). Числа — длины связей в Å.

Скачать (223KB)
5. Рис. 4. Формы молекулярных орбиталей изучаемых соединений, обеспечивающие наиболее сильное разделение заряда при электронном возбуждении (расчет B3LYP/6-31G(d,p)).

Скачать (500KB)
6. Рис. 5. Значения энергии ВЗМО и НСМО изучаемых соединений, рассчитанные в рамках DFT с использованием различных функционалов.

Скачать (439KB)
7. Рис. 6. Влияние различных методов расчета и условий молекулярного окружения на значения энергии низших возбужденных состояний изучаемых соединений.

Скачать (235KB)
8. Рис. 7. Спектры поглощения соединений 1–4, полученные различными методами расчета для газовой фазы: B3LYP (a), wB97XD (б), CAM-B3LYP (в), PBE0 (г).

Скачать (522KB)
9. Рис. 8. Рассчитанные в рамках DFT с использованием различных функционалов значения энергии связи экситона соединений 1–4: EB — расчет по методу зазоров; EС — расчет кулоновского взаимодействия; EC (NTO) — расчет кулоновского взаимодействия между натуральными орбиталями перехода.

Скачать (271KB)

© Российская академия наук, 2025