MKT-077 подавляет функциональную активность изолированных митохондрий скелетных мышц мышей
- Авторы: Игошкина А.Д.1, Микина Н.В.1, Чулков А.В.1, Хорошавина Е.И.1, Дубинин М.В.1
-
Учреждения:
- Марийский государственный университет
- Выпуск: Том 42, № 3 (2025)
- Страницы: 197-208
- Раздел: СТАТЬИ
- URL: https://rjmseer.com/0233-4755/article/view/686460
- DOI: https://doi.org/10.31857/S0233475525030037
- EDN: https://elibrary.ru/TDKHPT
- ID: 686460
Цитировать
Аннотация
В работе исследовано влияние производного родацианина MKT-077 на функционирование изолированных митохондрий скелетных мышц мышей. Показано, что MKT-077 дозозависимо подавляет дыхание митохондрий, энергизованных как глутаматом и малатом (субстраты комплекса I дыхательной цепи), так и сукцинатом (субстрат комплекса II дыхательной цепи). Такое действие MKT-077 сопровождается снижением мембранного потенциала органелл и связано как с ингибированием активности комплексов I и II дыхательной цепи митохондрий, так и c увеличением протонной проницаемости внутренней мембраны митохондрий. Молекулярный докинг выявил в комплексе I дыхательной цепи митохондрий сайты, обладающие сродством к MKT-077, сравнимым со сродством к специфическому ингибитору ротенону. 5 мкМ MKT-077 вызвал достоверное увеличение продукции перекиси водорода митохондриями скелетных мышц. Однако в концентрации 1 мкМ MKT-077 снижал прооксидантный эффект антимицина А. Кроме того, MKT-077 дозозависимо снизил способность митохондрий поглощать и аккумулировать ионы кальция в матриксе. В работе обсуждаются механизмы возможного действия MKT-077 на функционирование митохондрий скелетных мышц и их вклад в побочные эффекты, наблюдаемые при in vivo терапии патологических состояний с помощью этого производного родацианина.
Полный текст

Об авторах
А. Д. Игошкина
Марийский государственный университет
Email: dubinin1989@gmail.com
Россия, Йошкар-Ола
Н. В. Микина
Марийский государственный университет
Email: dubinin1989@gmail.com
Россия, Йошкар-Ола
А. В. Чулков
Марийский государственный университет
Email: dubinin1989@gmail.com
Россия, Йошкар-Ола
Е. И. Хорошавина
Марийский государственный университет
Email: dubinin1989@gmail.com
Россия, Йошкар-Ола
М. В. Дубинин
Марийский государственный университет
Автор, ответственный за переписку.
Email: dubinin1989@gmail.com
Россия, Йошкар-Ола
Список литературы
- Modica-Napolitano J.S., Koya K., Weisberg E., Brunelli B.T., Li Y., Chen L.B. 1996. Selective damage to carcinoma mitochondria by the rhodacyanine MKT-077. Cancer Res. 56 (3), 544–550.
- Koya K., Li Y., Wang H., Ukai T., Tatsuta N., Kawakami M., Shishido, Chen L.B. 1996. MKT-077, a novel rhodacyanine dye in clinical trials, exhibits anticarcinoma activity in preclinical studies based on selective mitochondrial accumulation. Cancer Res. 56, 538–543.
- Chiba Y., Kubota T., Watanabe M., Matsuzaki S.W., Otani Y., Teramoto T., Matsumoto Y., Koya K., Kitajima M. 1998. MKT-077, localized lipophilic cation: Antitumor activity against human tumor xenografts serially transplanted into nude mice. Anticancer Res. 18 (2A), 1047–1052.
- Wen B., Xu K., Huang R., Jiang T., Wang J., Chen J., Chen J., He B. 2022. Preserving mitochondrial function by inhibiting GRP75 ameliorates neuron injury under ischemic stroke. Mol Med Rep. 25 (5), 165. https://doi.org/10.3892/mmr.2022.12681
- Liang T., Hang W., Chen J., Wu Y., Wen B., Xu K., Ding B., Chen J. 2021. ApoE4 (Δ272-299) induces mitochondrial-associated membrane formation and mitochondrial impairment by enhancing GRP75-modulated mitochondrial calcium overload in neuron. Cell Biosci. 11 (1), 50. https://doi.org/10.1186/s13578-021-00563-y
- Rousaki A., Miyata Y., Jinwal U.K., Dickey C.A., Gestwicki J.E., Zuiderweg E.R. 2011. Allosteric drugs: The interaction of antitumor compound MKT-077 with human Hsp70 chaperones. J. Mol. Biol. 411 (3), 614–632. https://doi.org/10.1016/j.jmb.2011.06.003
- Xu H., Guan N., Ren Y.L., Wei Q.J., Tao Y.H., Yang G.S., Liu X.Y., Bu D.F., Zhang Y., Zhu S.N. 2018. IP3R-Grp75-VDAC1-MCU calcium regulation axis antagonists protect podocytes from apoptosis and decrease proteinuria in an Adriamycin nephropathy rat model. BMC Nephrol. 9 (1), 140. https://doi.org/10.1186/s12882-018-0940-3
- Li J., Qi F., Su H., Zhang C., Zhang Q., Zhang S. 2022. GRP75-faciliated mitochondria-associated ER membrane (MAM) integrity controls cisplatin-resistance in ovarian cancer patients. Int. J. Biol Sci. 18 (7), 2914–2931. https://doi.org/10.7150/ijbs.71571
- Esfahanian N., Knoblich C.D., Bowman G.A., Rezvani K. 2023. Mortalin: Protein partners, biological impacts, pathological roles, and therapeutic opportunities. Front. Cell Dev. Biol. 11, 1028519. https://doi.org/10.3389/fcell.2023.1028519
- Williamson C.L., Dabkowski E.R., Dillmann W.H., Hollander J.M. 2008. Mitochondria protection from hypoxia/reoxygenation injury with mitochondria heat shock protein 70 overexpression. Am. J. Physiol. Heart Circ. Physiol. 294 (1), H249–H256. https://doi.org/10.1152/ajpheart.00775.2007
- Dubinin M.V., Stepanova A.E., Mikheeva I.B., Igoshkina A.D., Cherepanova A.A., Talanov E.Y., Khoroshavina E.I., Belosludtsev K.N. 2024. Reduction of mitochondrial calcium overload via MKT-077-induced inhibition of glucose-regulated protein 75 alleviates skeletal muscle pathology in dystrophin-deficient mdx mice. Int. J. Mol. Sci. 25 (18), 9892. https://doi.org/10.3390/ijms25189892
- Weisberg E.L., Koya K., Modica-Napolitano J., Li Y., Chen L.B. 1996. In vivo administration of MKT-077 causes partial yet reversible impairment of mitochondrial function. Cancer Res. 56 (3), 551–555.
- Dubinin M.V., Talanov E.Y., Tenkov K.S., Starinets V.S., Mikheeva I.B., Sharapov M.G., Belosludtsev K.N. 2020. Duchenne muscular dystrophy is associated with the inhibition of calcium uniport in mitochondria and an increased sensitivity of the organelles to the calcium-induced permeability transition. Biochim. Biophys. Acta Mol. Basis Dis. 1866 (5), 165674. https://doi.org/10.1016/j.bbadis.2020.165674
- Belosludtsev K.N., Belosludtseva N.V., Kosareva E.A., Talanov E.Y., Gudkov S.V., Dubinin M.V. 2020. Itaconic acid impairs the mitochondrial function by the inhibition of complexes II and IV and induction of the permeability transition pore opening in rat liver mitochondria. Biochimie. 176, 150–157. https://doi.org/10.1016/j.biochi.2020.07.011
- Pollard A.K., Craig E.L., Chakrabarti L. 2016. Mitochondrial complex I activity measured by spectrophotometry is reduced across all brain regions in ageing and more specifically in neurodegeneration. PLoS One. 11 (6), e0157405. https://doi.org/10.1371/journal.pone.0157405
- Spinazzi M., Casarin A., Pertegato V., Salviati L., Angelini C. 2012. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat. Protoc. 7 (6), 1235–1246. https://doi.org/10.1038/nprot.2012.058
- Dubinin M.V., Svinin A.O., Vedernikov A.A., Starinets V.S., Tenkov K.S., Belosludtsev K.N., Samartsev V.N. 2019. Effect of hypothermia on the functional activity of liver mitochondria of grass snake (Natrix natrix): Inhibition of succinate-fueled respiration and K+ transport, ROS-induced activation of mitochondrial permeability transition. J. Bioenerg. Biomembr. 51 (3), 219–229. https://doi.org/10.1007/s10863-019-09796-6
- Gu J., Liu T., Guo R., Zhang L., Yang M. 2022. The coupling mechanism of mammalian mitochondrial complex I. Nat. Struct. Mol. Biol. 29 (2), 172–182. https://doi.org/10.1038/s41594-022-00722-w
- Eberhardt J., Santos-Martins D., Tillack A.F., Forli S. 2021. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 61 (8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
- Trott O., Olson A.J. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31 (2), 455–461. https://doi.org/10.1002/jcc.21334
- Neese F., Wennmohs F., Becker U., Riplinger C. 2020. The ORCA quantum chemistry program package. J. Chem. Phys. 152 (22), 224108. https://doi.org/10.1063/5.0004608
- Dubinin M. V., Mikheeva I. B., Stepanova A. E., Mikina N. V., Sushentsov D. V., Sharapov V. A., Cherepanova A. A., Loskutov V. V., Belosludtsev K. N. 2024. MKT-077 normalizes mitochondrial function and mitigates cardiac pathology in mdx mice. Biocell. 48 (12), 1815–1825. https://doi.org/10.32604/biocell.2024.058068
- Kharechkina E.S., Nikiforova A.B., Belosludtsev K.N., Rokitskaya T.I., Antonenko Y.N., Kruglov A.G. 2021. Pioglitazone is a mild carrier-dependent uncoupler of oxidative phosphorylation and a modulator of mitochondrial permeability transition. Pharmaceuticals (Basel). 14 (10), 1045. https://doi.org/10.3390/ph14101045
- Zorov D.B., Juhaszova M., Sollott S.J. 2014. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94 (3), 909–950. https://doi.org/10.1152/physrev.00026.2013
- Chen Q., Vazquez E.J., Moghaddas S., Hoppel C.L., Lesnefsky E.J. 2003. Production of reactive oxygen species by mitochondria: Central role of complex III. J. Biol. Chem. 278 (38), 36027–36031. https://doi.org/10.1074/jbc.M304854200
- Белослудцев К.Н., Дубинин М.В., Белослудцева Н.В., Миронова Г.Д. 2019. Транспорт ионов Ca2+ митохондриями: механизмы, молекулярные структуры и значение для клетки. Биохимия. 6 (84), 759–775. https://doi.org/10.1134/S0320972519060022
- Park S.H., Baek K.H., Shin I., Shin I. 2018. Subcellular HSP70 inhibitors promote cancer cell death via different mechanisms. Cell Chem Biol. 25 (10), 1242–1254. https://doi.org/10.1016/j.chembiol.2018.06.010
- Ozaki T., Yamashita T., Ishiguro S. 2009. Mitochondrial m-calpain plays a role in the release of truncated apoptosis-inducing factor from the mitochondria. Biochim. Biophys. Acta. 1793 (12), 1848–1859. https://doi.org/10.1016/j.bbamcr.2009.10.002
Дополнительные файлы
