Complement system, plasma coagulation, their interaction and role in the pathogenesis of coronavirus infection
- 作者: Shakhidzhanov S.S.1,2, Filippova A.E.1,2, Ataullakhanov F.I.1, Rumyantsev A.G.2
-
隶属关系:
- Federal State Budgetary Institution of Science, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences
- Federal State Budgetary Institution National Medical Research Center for Pediatric Hematology, Oncology, and Immunology named after Dmitry Rogachev of the Ministry of Health of Russia
- 期: 卷 56, 编号 1 (2025)
- 页面: 3-21
- 栏目: Articles
- URL: https://rjmseer.com/0301-1798/article/view/684850
- DOI: https://doi.org/10.31857/S0301179825010011
- EDN: https://elibrary.ru/VFVFVC
- ID: 684850
如何引用文章
详细
The interaction between plasma coagulation and the complement system is a topic of active research, but it remains poorly understood. Nevertheless, it may have played a significant role in the pathogenesis of coronavirus infection. This review describes the complement system, the plasma coagulation pathway, including the extrinsic and intrinsic (contact) activation pathways, the kallikrein-kinin system, their role in protecting the body, as well as studies on the direct interaction between these systems. The review also outlines the scheme and role of these interactions in coronavirus infection. Available data suggest that the direct interaction between plasma coagulation and the complement system is extremely limited and is most likely mediated by complement activation through kallikrein. This may be important for protecting the body and highlights the role of the contact pathway as part of the innate immune system. During coronavirus infection, complement system activation could be enhanced by the activation of the contact pathway and the kallikrein-kinin system, which, in turn, may amplify complement activity. Neutrophils played an important role in this interaction. Mutual activation of these systems could have been one of the reasons for the severity of coronavirus disease.
作者简介
S. Shakhidzhanov
Federal State Budgetary Institution of Science, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences; Federal State Budgetary Institution National Medical Research Center for Pediatric Hematology, Oncology, and Immunology named after Dmitry Rogachev of the Ministry of Health of Russia
编辑信件的主要联系方式.
Email: shakhidzhanov.s@yandex.ru
俄罗斯联邦, Moscow, 109029; Moscow, 117198
A. Filippova
Federal State Budgetary Institution of Science, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences; Federal State Budgetary Institution National Medical Research Center for Pediatric Hematology, Oncology, and Immunology named after Dmitry Rogachev of the Ministry of Health of Russia
Email: ae.zadorozhnaya@physics.msu.ru
俄罗斯联邦, Moscow, 109029; Moscow, 117198
F. Ataullakhanov
Federal State Budgetary Institution of Science, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences
Email: ataullakhanov.fazly@gmail.com
俄罗斯联邦, Moscow, 109029
A. Rumyantsev
Federal State Budgetary Institution National Medical Research Center for Pediatric Hematology, Oncology, and Immunology named after Dmitry Rogachev of the Ministry of Health of Russia
Email: alexrum47@mail.ru
俄罗斯联邦, Moscow, 117198
参考
- Бовт Е.А., Бражник В.А., Буланов А.Ю. и др. Результаты многоцентрового мониторинга показателей гемостаза у больных COVID-19 // Педиатрия. Журнал Им. Г.Н. Сперанского. 2020. Т. 6. № 99. C. 62–73. https://doi.org/20201127003353976.
- Бовт Е.А., Шахиджанов С.С., Филиппова А.Е. и др. Роль D-димера и других коагулологических показателей в диагностике нарушений системы гемостаза у пациентов с COVID-19 // Тромбоз, гемостаз и реология. 2023. Т. 3. C. 63–70. https://doi.org/10.25555/THR.2023.3.1070.
- Бутылин А.А., Пантелеев М.А., Атауллаханов Ф.И. Пространственная динамика свертывания крови // Российский химический журнал. 2007. Т. 1. № 51. C. 45–50.
- Бутылин А.А., Филиппова А.Е., Шахиджанов С.С., Атауллаханов Ф.И. Патологии системы комплемента // Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2020. Т. 1. № 19. C. 131–138. https://doi.org/10.24287/1726-1708-2020-19-1-131-138.
- Калинская А.И., Духин О.А., Молодцов И.А. и др. Особенности гемостаза у пациентов с коронавирусной инфекцией // Терапевтический архив. 2022. Т. 7. № 94. C. 876–883. https://doi.org/10.26442/00403660.2022.07.201754.
- Шахиджанов С.С., Филиппова А.Е., Бутылин А.А., Атауллаханов Ф.И. Современное представление о системе комплемента // Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2019. Т. 3. № 18. C. 130–144. https://doi.org/10.24287/1726-1708-2019-18-3-130-144.
- Alfaro E., Díaz-García E., García-Tovar S. et al. Impaired Kallikrein-Kinin System in COVID-19 Patients’ Severity // Frontiers in Immunology. 2022. № 13. P. 909342. https://doi.org/10.3389/fimmu.2022.909342.
- Ali Y.M., Ferrari M., Lynch N.J. et al. Lectin Pathway Mediates Complement Activation by SARS-CoV-2 Proteins // Frontiers in Immunology. 2021. № 12. P. 714511. https://doi.org/10.3389/fimmu.2021.714511.
- Amara U., Flierl M.A., Rittirsch D. et al. Molecular intercommunication between the complement and coagulation systems // Journal of Immunology. 2010. V. 9. № 185. P. 5628–5636. https://doi.org/10.4049/jimmunol.0903678.
- Annane D., Heming N., Grimaldi-Bensouda L. et al. Eculizumab as an emergency treatment for adult patients with severe COVID-19 in the intensive care unit: A proof-of-concept study // EClinicalMedicine. 2020. № 28. P. 100590. https://doi.org/10.1016/j.eclinm.2020.100590.
- Balbi C., Burrello J., Bolis S. et al. Circulating extracellular vesicles are endowed with enhanced procoagulant activity in SARS-CoV-2 infection // EBioMedicine. 2021. № 67. P. 103369. https://doi.org/10.1016/j.ebiom.2021.103369.
- Barnes B.J., Adrover J.M., Baxter-Stoltzfus A. et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps // The Journal of Experimental Medicine. 2020. V. 6. № 217. P. e20200652. https://doi.org/10.1084/jem.20200652.
- Beltrami E., Jesty J. The role of membrane patch size and flow in regulating a proteolytic feedback threshold on a membrane: possible application in blood coagulation // Mathematical Biosciences. 2001. V. 1. № 172. P. 1–13. https://doi.org/10.1016/s0025-5564(01)00064-5.
- Ben Nasr A.B., Herwald H., Müller-Esterl W., Björck L. Human kininogens interact with M protein, a bacterial surface protein and virulence determinant // The Biochemical Journal. 1995. V. 305. № 1. P. 173–180. https://doi.org/10.1042/bj3050173.
- Berends E.T.M., Gorham R.D., Ruyken M. et al. Molecular insights into the surface-specific arrangement of complement C5 convertase enzymes // BMC biology. 2015. № 13. P. 93. https://doi.org/10.1186/s12915-015-0203-8.
- Bhargavan B., Kanmogne G.D. SARS-CoV-2 Spike Proteins and Cell-Cell Communication Induce P-Selectin and Markers of Endothelial Injury, NETosis, and Inflammation in Human Lung Microvascular Endothelial Cells and Neutrophils: Implications for the Pathogenesis of COVID-19 Coagulopathy // International Journal of Molecular Sciences. 2023. V. 16. № 24. P. 12585. https://doi.org/10.3390/ijms241612585.
- Brodsky R.A. Paroxysmal nocturnal hemoglobinuria // Blood. 2014. V. 18. № 124. P. 2804–2811. https://doi.org/10.1182/blood-2014-02-522128.
- Bulanov A.Y., Bulanova E.L., Simarova I.B. et al. Integral assays of hemostasis in hospitalized patients with COVID-19 on admission and during heparin thromboprophylaxis // PloS One. 2023. V. 6. № 18. P. e0282939. https://doi.org/10.1371/journal.pone.0282939.
- Burger D., Schleuning W.D., Schapira M. Human plasma prekallikrein. Immunoaffinity purification and activation to alpha- and beta-kallikrein // The Journal of Biological Chemistry. 1986. V. 1. № 261. P. 324–327.
- Casciola-Rosen L., Thiemann D.R., Andrade F. et al. IgM anti-ACE2 autoantibodies in severe COVID-19 activate complement and perturb vascular endothelial function // JCI insight. 2022. V. 9. № 7. P. e158362. https://doi.org/10.1172/jci.insight.158362.
- Castanha P.M.S., Tuttle D.J., Kitsios G.D. et al. Contribution of Coronavirus-Specific Immunoglobulin G Responses to Complement Overactivation in Patients with Severe Coronavirus Disease 2019 // The Journal of Infectious Diseases. 2022. V. 5. № 226. P. 766–777. https://doi.org/10.1093/infdis/jiac091.
- Cavalli G., Larcher A., Tomelleri A. et al. Interleukin-1 and interleukin-6 inhibition compared with standard management in patients with COVID-19 and hyperinflammation: a cohort study // The Lancet. Rheumatology. 2021. V. 4. № 3. P. e253–e261. https://doi.org/10.1016/S2665-9913(21)00012-6.
- Cooley B.C. The dirty side of the intrinsic pathway of coagulation // Thrombosis Research. 2016. № 145. P. 159–160. https://doi.org/10.1016/j.thromres.2016.06.028.
- Craig T., Magerl M., Levy D.S. et al. Prophylactic use of an anti-activated factor XII monoclonal antibody, garadacimab, for patients with C1-esterase inhibitor-deficient hereditary angioedema: a randomised, double-blind, placebo-controlled, phase 2 trial // Lancet. 2022. V. 10328. № 399. P. 945–955. https://doi.org/10.1016/S0140-6736(21)02225-X.
- Denk S., Taylor R.P., Wiegner R. et al. Complement C5a-Induced Changes in Neutrophil Morphology During Inflammation // Scandinavian Journal of Immunology. 2017. V. 3. № 86. P. 143–155. https://doi.org/10.1111/sji.12580.
- DiScipio R.G. The activation of the alternative pathway C3 convertase by human plasma kallikrein // Immunology. 1982. V. 3. № 45. P. 587–595.
- Dunn J.T., Silverberg M., Kaplan A.P. The cleavage and formation of activated human Hageman factor by autodigestion and by kallikrein // The Journal of Biological Chemistry. 1982. V. 4. № 257. P. 1779–1784.
- Englert H., Rangaswamy C., Deppermann C. et al. Defective NET clearance contributes to sustained FXII activation in COVID-19-associated pulmonary thrombo-inflammation // EBioMedicine. 2021. № 67. P. 103382. https://doi.org/10.1016/j.ebiom.2021.103382.
- Farmer P.J., Bernier S.G., Lepage A. et al. Permeability of endothelial monolayers to albumin is increased by bradykinin and inhibited by prostaglandins // American Journal of Physiology. Lung Cellular and Molecular Physiology. 2001. V. 4. № 280. P. L732–738. https://doi.org/10.1152/ajplung.2001.280.4.L732.
- Foley J.H., Conway E.M. Cross Talk Pathways Between Coagulation and Inflammation // Circulation Research. 2016. V. 9. № 118. P. 1392–1408. https://doi.org/10.1161/CIRCRESAHA.116.306853.
- Francischetti I.M.B., Toomer K., Zhang Y. et al. Upregulation of pulmonary tissue factor, loss of thrombomodulin and immunothrombosis in SARS-CoV-2 infection // EClinicalMedicine. 2021. № 39. P. 101069. https://doi.org/10.1016/j.eclinm.2021.101069.
- Gailani D., Broze G.J. Factor XI activation in a revised model of blood coagulation // Science. 1991. V. 5022. № 253. P. 909–912. https://doi.org/10.1126/science.1652157.
- Ghebrehiwet B., Randazzo B.P., Dunn J.T., Silverberg M., Kaplan A.P. Mechanisms of activation of the classical pathway of complement by Hageman factor fragment // The Journal of Clinical Investigation. 1983. V. 5. № 71. P. 1450–1456. https://doi.org/10.1172/jci110898.
- Ghebrehiwet B., Silverberg M., Kaplan A.P. Activation of the classical pathway of complement by Hageman factor fragment // The Journal of Experimental Medicine. 1981. V. 3. № 153. P. 665–676. https://doi.org/10.1084/jem.153.3.665.
- Goodeve A.C. Hemophilia B: molecular pathogenesis and mutation analysis // Journal of thrombosis and haemostasis. 2015. V. 7. № 13. P. 1184–1195. https://doi.org/10.1111/jth.12958.
- Governa M., Fenoglio I., Amati M. et al. Cleavage of the fifth component of human complement and release of a split product with C5a-like activity by crystalline silica through free radical generation and kallikrein activation // Toxicology and Applied Pharmacology. 2002. V. 3. № 179. P. 129–136. https://doi.org/10.1006/taap.2002.9351.
- Harpel P.C., Lewin M.F., Kaplan A.P. Distribution of plasma kallikrein between C-1 inactivator and alpha 2-macroglobulin in plasma utilizing a new assay for alpha 2-macroglobulin-kallikrein complexes // The Journal of Biological Chemistry. 1985. V. 7. № 260. P. 4257–4263.
- Henderson M.W., Lima F., Moraes C.R.P. et al. Contact and intrinsic coagulation pathways are activated and associated with adverse clinical outcomes in COVID-19 // Blood Advances. 2022. V. 11. № 6. P. 3367–3377. https://doi.org/10.1182/bloodadvances.2021006620.
- Herwald H., Mörgelin M., Olsén A., et al. Activation of the contact-phase system on bacterial surfaces- a clue to serious complications in infectious diseases // Nature Medicine. 1998. V. 3. № 4. P. 298–302. https://doi.org/10.1038/nm0398-298.
- Heurich M., Preston R.J.S., O’Donnell V.B., et al. Thrombomodulin enhances complement regulation through strong affinity interactions with factor H and C3b-Factor H complex // Thrombosis Research. 2016. № 145. P. 84–92. https://doi.org/10.1016/j.thromres.2016.07.017.
- Holers V.M. Complement and its receptors: new insights into human disease // Annual Review of Immunology. 2014. № 32. P. 433–459. https://doi.org/10.1146/annurev-immunol-032713-120154.
- Holliday Z.M., Earhart A.P., Alnijoumi M.M. et al. Non-Randomized Trial of Dornase Alfa for Acute Respiratory Distress Syndrome Secondary to Covid-19 // Frontiers in Immunology. 2021. № 12. P. 714833. https://doi.org/10.3389/fimmu.2021.714833.
- Holter J.C., Pischke S.E., de Boer E. et al. Systemic complement activation is associated with respiratory failure in COVID-19 hospitalized patients // Proceedings of the National Academy of Sciences of the United States of America. 2020. V. 40. № 117. P. 25018–25025. https://doi.org/10.1073/pnas.2010540117.
- Hoyer L.W. Hemophilia A // The New England Journal of Medicine. 1994. V. 1. № 330. P. 38–47. https://doi.org/10.1056/NEJM199401063300108.
- Huber-Lang M., Sarma J.V., Zetoune F.S. et al. Generation of C5a in the absence of C3: a new complement activation pathway // Nature Medicine. 2006. V. 6. № 12. P. 682–687. https://doi.org/10.1038/nm1419.
- Irmscher S., Döring N., Halder L.D. et al. Kallikrein Cleaves C3 and Activates Complement // Journal of Innate Immunity. 2018. V. 2. № 10. P. 94–105. https://doi.org/10.1159/000484257.
- Jackson S.P., Darbousset R., Schoenwaelder S.M. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms // Blood. 2019. V. 9. № 133. P. 906–918. https://doi.org/10.1182/blood-2018-11-882993.
- Jesty J., Beltrami E. Positive feedbacks of coagulation: their role in threshold regulation // Arteriosclerosis, Thrombosis, and Vascular Biology. 2005. V. 12. № 25. P. 2463–2469. https://doi.org/10.1161/01.ATV.0000187463.91403.b2.
- Joffre J., Rodriguez L., Matthay Z.A. et al. COVID-19-associated Lung Microvascular Endotheliopathy: A “From the Bench” Perspective // American Journal of Respiratory and Critical Care Medicine. 2022. V. 8. № 206. P. 961–972. https://doi.org/10.1164/rccm.202107-1774OC.
- Juang L.J., Mazinani N., Novakowski S.K. et al. Coagulation factor XII contributes to hemostasis when activated by soil in wounds // Blood Advances. 2020. V. 8. № 4. P. 1737–1745. https://doi.org/10.1182/bloodadvances.2019000425.
- Kajdácsi E., Jandrasics Z., Veszeli N. et al. Patterns of C1-Inhibitor/Plasma Serine Protease Complexes in Healthy Humans and in Hereditary Angioedema Patients // Frontiers in Immunology. 2020. № 11. P. 794. https://doi.org/10.3389/fimmu.2020.00794.
- Kastrup C.J., Runyon M.K., Shen F., Ismagilov R.F. Modular chemical mechanism predicts spatiotemporal dynamics of initiation in the complex network of hemostasis // Proceedings of the National Academy of Sciences of the United States of America. 2006. V. 43. № 103. P. 15747–15752. https://doi.org/10.1073/pnas.0605560103.
- Kavanagh D., Goodship T.H., Richards A. Atypical hemolytic uremic syndrome // Seminars in Nephrology. 2013. V. 6. № 33. P. 508–530. https://doi.org/10.1016/j.semnephrol.2013.08.003.
- Keshari R.S., Jyoti A., Dubey M. et al. Cytokines induced neutrophil extracellular traps formation: implication for the inflammatory disease condition // PloS One. 2012. V. 10. № 7. P. e48111. https://doi.org/10.1371/journal.pone.0048111.
- Keshari R.S., Silasi R., Lupu C., Taylor F.B. Jr, Lupu F. In vivo-generated thrombin and plasmin do not activate the complement system in baboons // Blood. 2017. V. 24. № 130. P. 2678–2681. https://doi.org/10.1182/blood-2017-06-788216.
- Kishimoto T.K., Viswanathan K., Ganguly T. et al. Contaminated heparin associated with adverse clinical events and activation of the contact system // The New England Journal of Medicine. 2008. V. 23. № 358. P. 2457–2467. https://doi.org/10.1056/NEJMoa0803200.
- Kopp A., Hebecker M., Svobodová E., Józsi M. Factor h: a complement regulator in health and disease, and a mediator of cellular interactions // Biomolecules. 2012. V. 1. № 2. P. 46–75. https://doi.org/10.3390/biom2010046.
- Krisinger M.J., Goebeler V., Lu Z. et al. Thrombin generates previously unidentified C5 products that support the terminal complement activation pathway // Blood. 2012. V. 8. № 120. P. 1717–1725. https://doi.org/10.1182/blood-2012-02-412080.
- Kurachi K., Davie E.W. Activation of human factor XI (plasma thromboplastin antecedent) by factor XIIa (activated Hageman factor) // Biochemistry. 1977. V. 26. № 16. P. 5831–5839. https://doi.org/10.1021/bi00645a030.
- Labberton L., Kenne E., Long A.T. et al. Neutralizing blood-borne polyphosphate in vivo provides safe thromboprotection // Nature Communications. 2016. № 7. P. 12616. https://doi.org/10.1038/ncomms12616.
- Leatherdale A., Stukas S., Lei V. et al. Persistently elevated complement alternative pathway biomarkers in COVID-19 correlate with hypoxemia and predict in-hospital mortality // Medical Microbiology and Immunology. 2022. V. 1. № 211. P. 37–48. https://doi.org/10.1007/s00430-021-00725-2.
- Lim G.B. Milestone 1: Discovery and purification of heparin // Nature Reviews. Cardiology. 2017. https://doi.org/10.1038/nrcardio.2017.171.
- Lipcsey M., Persson B., Eriksson O. et al. The Outcome of Critically Ill COVID-19 Patients Is Linked to Thromboinflammation Dominated by the Kallikrein/Kinin System // Frontiers in Immunology. 2021. № 12. P. 627579. https://doi.org/10.3389/fimmu.2021.627579.
- Liu X., Wang Y., Bauer A.T. et al. Neutrophils activated by membrane attack complexes increase the permeability of melanoma blood vessels // Proceedings of the National Academy of Sciences of the United States of America. 2022. V. 33. № 119. P. e2122716119. https://doi.org/10.1073/pnas.2122716119.
- Maas C., Oschatz C., Renné T. The plasma contact system 2.0 // Seminars in Thrombosis and Hemostasis. 2011. V. 4. № 37. P. 375–381. https://doi.org/10.1055/s-0031-1276586.
- Magro C., Mulvey J.J., Berlin D. et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases // Translational Research: The Journal of Laboratory and Clinical Medicine. 2020. № 220. P. 1–13. https://doi.org/10.1016/j.trsl.2020.04.007.
- Mandle R.J., Colman R.W., Kaplan A.P. Identification of prekallikrein and high-molecular-weight kininogen as a complex in human plasma // Proceedings of the National Academy of Sciences of the United States of America. 1976. V. 11. № 73. P. 4179–4183. https://doi.org/10.1073/pnas.73.11.4179.
- Mannes M., Pechtl V., Hafner S. et al. Complement and platelets: prothrombotic cell activation requires membrane attack complex-induced release of danger signals // Blood Advances. 2023. V. 20. № 7. P. 6367–6380. https://doi.org/10.1182/bloodadvances.2023010817.
- Martens C.P., Van Mol P., Wauters J. et al. Dysregulation of the kallikrein-kinin system in bronchoalveolar lavage fluid of patients with severe COVID-19 // EBioMedicine. 2022. № 83. P. 104195. https://doi.org/10.1016/j.ebiom.2022.104195.
- Matafonov A., Leung P.Y., Gailani A.E. et al. Factor XII inhibition reduces thrombus formation in a primate thrombosis model // Blood. 2014. V. 11. № 123. P. 1739–1746. https://doi.org/10.1182/blood-2013-04-499111.
- Mohammed B.M., Matafonov A., Ivanov I. et al. An update on factor XI structure and function // Thrombosis Research. 2018. № 161. P. 94–105. https://doi.org/10.1016/j.thromres.2017.10.008.
- Mombouli J.V., Vanhoutte P.M. Kinins and endothelial control of vascular smooth muscle // Annual Review of Pharmacology and Toxicology. 1995. № 35. P. 679–705. https://doi.org/10.1146/annurev.pa.35.040195.003335.
- Moore K.H., Murphy H.A., George E.M. The glycocalyx: a central regulator of vascular function // American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 2021. V. 4. № 320. P. R508–R518. https://doi.org/10.1152/ajpregu.00340.2020.
- Moore S.R., Menon S.S., Cortes C., Ferreira V.P. Hijacking Factor H for Complement Immune Evasion // Frontiers in Immunology. 2021. № 12. P. 602277. https://doi.org/10.3389/fimmu.2021.602277.
- Moyer M.P., Tracy R.P., Tracy P.B. et al. Plasma lipoproteins support prothrombinase and other procoagulant enzymatic complexes // Arteriosclerosis, Thrombosis, and Vascular Biology. 1998. V. 3. № 18. P. 458–465. https://doi.org/10.1161/01.atv.18.3.458.
- Nilsson P.H., Johnson C., Quach Q.H. et al. A Conformational Change of Complement C5 Is Required for Thrombin-Mediated Cleavage, Revealed by a Novel Ex Vivo Human Whole Blood Model Preserving Full Thrombin Activity // Journal of Immunology. 2021. V. 6. № 207. P. 1641–1651. https://doi.org/10.4049/jimmunol.2001471.
- de Nooijer A.H., Grondman I., Janssen N.A.F. et al. Complement Activation in the Disease Course of Coronavirus Disease 2019 and Its Effects on Clinical Outcomes // The Journal of Infectious Diseases. 2021. V. 2. № 223. P. 214–224. https://doi.org/10.1093/infdis/jiaa646.
- Noubouossie D.F., Whelihan M.F., Yu Y.-B. et al. In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps // Blood. 2017. V. 8. № 129. P. 1021–1029. https://doi.org/10.1182/blood-2016-06-722298.
- Nuovo G.J., Magro C., Shaffer T. et al. Endothelial cell damage is the central part of COVID-19 and a mouse model induced by injection of the S1 subunit of the spike protein // Annals of Diagnostic Pathology. 2021. № 51. P. 151682. https://doi.org/10.1016/j.anndiagpath.2020.151682.
- Oncul S., Afshar-Kharghan V. The interaction between the complement system and hemostatic factors // Current Opinion in Hematology. 2020. V. 5. № 27. P. 341–352. https://doi.org/10.1097/MOH.0000000000000605.
- Ovanesov M.V., Ananyeva N.M., Panteleev M.A., Ataullakhanov F.I., Saenko E.L. Initiation and propagation of coagulation from tissue factor-bearing cell monolayers to plasma: initiator cells do not regulate spatial growth rate // Journal of thrombosis and haemostasis. 2005. V. 2. № 3. P. 321–331. https://doi.org/10.1111/j.1538-7836.2005.01128.x.
- Ovanesov M.V., Krasotkina J.V., Ul’yanova L.I. et al. Hemophilia A and B are associated with abnormal spatial dynamics of clot growth // Biochimica Et Biophysica Acta. 2002. V. 1. № 1572. P. 45–57. https://doi.org/10.1016/s0304-4165(02)00278-7.
- Ovanesov M.V., Lopatina E.G., Saenko E.L. et al. Effect of factor VIII on tissue factor-initiated spatial clot growth // Thrombosis and Haemostasis. 2003. V. 2. № 89. P. 235–242.
- Pangburn M.K., Müller-Eberhard H.J. Initiation of the alternative complement pathway due to spontaneous hydrolysis of the thioester of C3 // Annals of the New York Academy of Sciences. 1983. № 421. P. 291–298. https://doi.org/10.1111/j.1749-6632.1983.tb18116.x.
- Panteleev M.A., Balandina A.N., Lipets E.N., Ovanesov M.V., Ataullakhanov F.I. Task-oriented modular decomposition of biological networks: trigger mechanism in blood coagulation // Biophysical Journal. 2010. V. 9. № 98. P. 1751–1761. https://doi.org/10.1016/j.bpj.2010.01.027.
- Panteleev M.A., Dashkevich N.M., Ataullakhanov F.I. Hemostasis and thrombosis beyond biochemistry: roles of geometry, flow and diffusion // Thrombosis Research. 2015. V. 4. № 136. P. 699–711. https://doi.org/10.1016/j.thromres.2015.07.025.
- Panteleev M.A., Ovanesov M.V., Kireev D.A. et al. Spatial propagation and localization of blood coagulation are regulated by intrinsic and protein C pathways, respectively // Biophysical Journal. 2006. V. 5. № 90. P. 1489–1500. https://doi.org/10.1529/biophysj.105.069062.
- Parunov L.A., Liang Y., Lu Q. et al. Thrombogenic potential of picomolar coagulation factor XIa is mediated by thrombin wave propagation // Blood Advances. 2023. V. 11. № 7. P. 2622–2631. https://doi.org/10.1182/bloodadvances.2022008743.
- Pfister F., Vonbrunn E., Ries T. et al. Complement Activation in Kidneys of Patients With COVID-19 // Frontiers in Immunology. 2020. № 11. P. 594849. https://doi.org/10.3389/fimmu.2020.594849.
- Pixley R.A., Schapira M., Colman R.W. The regulation of human factor XIIa by plasma proteinase inhibitors // The Journal of Biological Chemistry. 1985. V. 3. № 260. P. 1723–1729.
- Pokhilko A.V., Ataullakhanov F.I. Contact activation of blood coagulation: trigger properties and hysteresis. Kinetic recognition of foreign surfaces upon contact activation of blood coagulation: a hypothesis // Journal of Theoretical Biology. 1998. V. 2. № 191. P. 213–219. https://doi.org/10.1006/jtbi.1997.0584.
- Ponczek M.B., Gailani D., Doolittle R.F. Evolution of the contact phase of vertebrate blood coagulation // Journal of thrombosis and haemostasis. 2008. V. 11. № 6. P. 1876–1883. https://doi.org/10.1111/j.1538-7836.2008.03143.x.
- Puy C., Pang J., Reitsma S.E. et al. Cross-Talk between the Complement Pathway and the Contact Activation System of Coagulation: Activated Factor XI Neutralizes Complement Factor H // Journal of Immunology. 2021. V. 8. № 206. P. 1784–1792. https://doi.org/10.4049/jimmunol.2000398.
- RECOVERY Collaborative Group. Aspirin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial // Lancet. 2022. V. 10320. № 399. P. 143–151. https://doi.org/10.1016/S0140-6736(21)01825-0.
- Redondo-Calvo F.J., Padín J.F., Muñoz-Rodríguez J.R. et al. Aprotinin treatment against SARS-CoV-2: A randomized phase III study to evaluate the safety and efficacy of a pan-protease inhibitor for moderate COVID-19 // European Journal of Clinical Investigation. 2022. V. 6. № 52. P. e13776. https://doi.org/10.1111/eci.13776.
- Revak S.D., Cochrane C.G., Johnston A.R., Hugli T.E. Structural changes accompanying enzymatic activation of human Hageman factor // The Journal of Clinical Investigation. 1974. V. 3. № 54. P. 619–627. https://doi.org/10.1172/JCI107799.
- Ricklin D., Reis E.S., Lambris J.D. Complement in disease: a defence system turning offensive // Nature Reviews. Nephrology. 2016. V. 7. № 12. P. 383–401. https://doi.org/10.1038/nrneph.2016.70.
- Riewald M., Himmelreich G., Breindl P., Neuhaus P., Riess H. Soluble thrombomodulin levels during orthotopic liver transplantation // Seminars in Thrombosis and Hemostasis. 1993. V. 3. № 19. P. 246–249. https://doi.org/10.1055/s-2007-994034.
- Rodrigues T.S., de Sá K.S.G., Ishimoto A.Y. et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients // The Journal of Experimental Medicine. 2021. V. 3. № 218. P. e20201707. https://doi.org/10.1084/jem.20201707.
- Rosing J., Tans G., Govers-Riemslag J.W., Zwaal R.F., Hemker H.C. The role of phospholipids and factor Va in the prothrombinase complex // The Journal of Biological Chemistry. 1980. V. 1. № 255. P. 274–283.
- Rotoli B.M., Barilli A., Visigalli R., Ferrari F., Dall’Asta V. Endothelial Cell Activation by SARS-CoV-2 Spike S1 Protein: A Crosstalk between Endothelium and Innate Immune Cells // Biomedicines. 2021. V. 9. № 9. P. 1220. https://doi.org/10.3390/biomedicines9091220.
- Saito H., Matsushita T., Kojima T. Historical perspective and future direction of coagulation research // Journal of thrombosis and haemostasis. 2011. № 9 Suppl 1. P. 352–363. https://doi.org/10.1111/j.1538-7836.2011.04362.x.
- Schmaier A.A., Pajares Hurtado G.M., Manickas-Hill Z.J. et al. Tie2 activation protects against prothrombotic endothelial dysfunction in COVID-19 // JCI insight. 2021. V. 20. № 6. P. e151527. https://doi.org/10.1172/jci.insight.151527.
- Schmidt C.Q., Herbert A.P., Kavanagh D. et al. A new map of glycosaminoglycan and C3b binding sites on factor H // Journal of Immunology. 2008. V. 4. № 181. P. 2610–2619. https://doi.org/10.4049/jimmunol.181.4.2610.
- Schrottmaier W.C., Assinger A. The Concept of Thromboinflammation // Hamostaseologie. 2024. V. 1. № 44. P. 21–30. https://doi.org/10.1055/a-2178-6491.
- Scott C.F., Silver L.D., Schapira M., Colman R.W. Cleavage of human high molecular weight kininogen markedly enhances its coagulant activity. Evidence that this molecule exists as a procofactor // The Journal of Clinical Investigation. 1984. V. 4. № 73. P. 954–962. https://doi.org/10.1172/JCI111319.
- Silasi R., Keshari R.S., Lupu C. et al. Inhibition of contact-mediated activation of factor XI protects baboons against S aureus-induced organ damage and death // Blood Advances. 2019. V. 4. № 3. P. 658–669. https://doi.org/10.1182/bloodadvances.2018029983.
- Silasi R., Keshari R.S., Regmi G. et al. Factor XII plays a pathogenic role in organ failure and death in baboons challenged with Staphylococcus aureus // Blood. 2021. V. 2. № 138. P. 178–189. https://doi.org/10.1182/blood.2020009345.
- Sim R.B., Schwaeble W., Fujita T. Complement research in the 18th—21st centuries: Progress comes with new technology // Immunobiology. 2016. V. 10. № 221. P. 1037–1045. https://doi.org/10.1016/j.imbio.2016.06.011.
- Sim R.B., Twose T.M., Paterson D.S., Sim E. The covalent-binding reaction of complement component C3 // The Biochemical Journal. 1981. V. 1. № 193. P. 115–127. https://doi.org/10.1042/bj1930115.
- Sinauridze E.I., Kireev D.A., Popenko N.Y. et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets // Thrombosis and Haemostasis. 2007. V. 3. № 97. P. 425–434.
- Sinkovits G., Mező B., Réti M. et al. Complement Overactivation and Consumption Predicts In-Hospital Mortality in SARS-CoV-2 Infection // Frontiers in Immunology. 2021. № 12. P. 663187. https://doi.org/10.3389/fimmu.2021.663187.
- Skendros P., Mitsios A., Chrysanthopoulou A. et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis // The Journal of Clinical Investigation. 2020. V. 11. № 130. P. 6151–6157. https://doi.org/10.1172/JCI141374.
- Sodhi C.P., Wohlford-Lenane C., Yamaguchi Y. et al. Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration // American Journal of Physiology. Lung Cellular and Molecular Physiology. 2018. V. 1. № 314. P. L17–L31. https://doi.org/10.1152/ajplung.00498.2016.
- Spadaro S., Fogagnolo A., Campo G. et al. Markers of endothelial and epithelial pulmonary injury in mechanically ventilated COVID-19 ICU patients // Critical Care. 2021. V. 1. № 25. P. 74. https://doi.org/10.1186/s13054-021-03499-4.
- Stanne T.M., Pedersen A., Gisslén M., Jern C. Low admission protein C levels are a risk factor for disease worsening and mortality in hospitalized patients with COVID-19 // Thrombosis Research. 2021. № 204. P. 13–15. https://doi.org/10.1016/j.thromres.2021.05.016.
- Sun H., Wang X., Degen J.L., Ginsburg D. Reduced thrombin generation increases host susceptibility to group A streptococcal infection // Blood. 2009. V. 6. № 113. P. 1358–1364. https://doi.org/10.1182/blood-2008-07-170506.
- Tait J.F., Fujikawa K. Primary structure requirements for the binding of human high molecular weight kininogen to plasma prekallikrein and factor XI // The Journal of Biological Chemistry. 1987. V. 24. № 262. P. 11651–11656.
- Tan B.K., Mainbourg S., Friggeri A. et al. Arterial and venous thromboembolism in COVID-19: a study-level meta-analysis // Thorax. 2021. V. 10. № 76. P. 970–979. https://doi.org/10.1136/thoraxjnl-2020-215383.
- Tankersley D.L., Finlayson J.S. Kinetics of activation and autoactivation of human factor XII // Biochemistry. 1984. V. 2. № 23. P. 273–279. https://doi.org/10.1021/bi00297a016.
- Tedesco F., Pausa M., Nardon E. et al. The cytolytically inactive terminal complement complex activates endothelial cells to express adhesion molecules and tissue factor procoagulant activity // The Journal of Experimental Medicine. 1997. V. 9. № 185. P. 1619–1627. https://doi.org/10.1084/jem.185.9.1619.
- Terentyeva V.A., Sveshnikova A.N., Panteleev M.A. Kinetics and mechanisms of surface-dependent coagulation factor XII activation // Journal of Theoretical Biology. 2015. № 382. P. 235–243. https://doi.org/10.1016/j.jtbi.2015.07.001.
- Triantafilou K., Hughes T.R., Triantafilou M., Morgan B.P. The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation // Journal of Cell Science. 2013. V. Pt 13. № 126. P. 2903–2913. https://doi.org/10.1242/jcs.124388.
- Van de Veerdonk F.L., Kouijzer I.J.E., de Nooijer A.H. et al. Outcomes Associated With Use of a Kinin B2 Receptor Antagonist Among Patients With COVID-19 // JAMA network open. 2020. V. 8. № 3. P. e2017708. https://doi.org/10.1001/jamanetworkopen.2020.17708.
- Van de Veerdonk F.L., Netea M.G., Van Deuren M. et al. Kallikrein-kinin blockade in patients with COVID-19 to prevent acute respiratory distress syndrome // eLife. 2020. № 9. P. e57555. https://doi.org/10.7554/eLife.57555.
- Verhamme P., Yi B.A., Segers A. et al. Abelacimab for Prevention of Venous Thromboembolism // The New England Journal of Medicine. 2021. V. 7. № 385. P. 609–617. https://doi.org/10.1056/NEJMoa2105872.
- Versteeg H.H., Heemskerk J.W.M., Levi M., Reitsma P.H. New fundamentals in hemostasis // Physiological Reviews. 2013. V. 1. № 93. P. 327–358. https://doi.org/10.1152/physrev.00016.2011.
- Veszeli N., Kőhalmi K.V., Kajdácsi E. et al. Complete kinetic follow-up of symptoms and complement parameters during a hereditary angioedema attack // Allergy. 2018. V. 2. № 73. P. 516–520. https://doi.org/10.1111/all.13327.
- Vora S.M., Lieberman J., Wu H. Inflammasome activation at the crux of severe COVID-19 // Nature Reviews. Immunology. 2021. V. 11. № 21. P. 694–703. https://doi.org/10.1038/s41577-021-00588-x.
- Xu S.-W., Ilyas I., Weng J.-P. Endothelial dysfunction in COVID-19: an overview of evidence, biomarkers, mechanisms and potential therapies // Acta Pharmacologica Sinica. 2023. V. 4. № 44. P. 695–709. https://doi.org/10.1038/s41401-022-00998-0.
- Yu J., Yuan X., Chen H. et al. Direct activation of the alternative complement pathway by SARS-CoV-2 spike proteins is blocked by factor D inhibition // Blood. 2020. V. 18. № 136. P. 2080–2089. https://doi.org/10.1182/blood.2020008248.
- Zinellu A., Mangoni A.A. Serum Complement C3 and C4 and COVID-19 Severity and Mortality: A Systematic Review and Meta-Analysis With Meta-Regression // Frontiers in Immunology. 2021. № 12. P. 696085. https://doi.org/10.3389/fimmu.2021.696085.
补充文件
