Радиолокационное картирование южного полярного района Луны на длине волны 4.2 см
- Authors: Bondarenko Y.S.1, Marshalov D.A.1, Pavlov S.R.1, Tolstoy A.L.1
-
Affiliations:
- Federal State Budgetary Institution of Science Institute of Applied Astronomy of the Russian Academy of Sciences
- Issue: Vol 59, No 4 (2025): VOL 59, NO4 (2025)
- Pages: 301-314
- Section: Articles
- URL: https://rjmseer.com/0320-930X/article/view/691448
- DOI: https://doi.org/10.31857/S0320930X25040012
- EDN: https://elibrary.ru/lwezvy
- ID: 691448
Cite item
Abstract
В работе представлены новые радиолокационные карты южного полярного района Луны на длине волны 4.2 см со средним пространственным разрешением 90 м. Карты построены на основе радиолокационных изображений, полученных в 2023 г. с использованием 64-метровой антенны ТНА-1500 Центра космической связи ОКБ МЭИ Медвежьи озера и 13.2-метровых радиотелескопов РТ-13 в обсерваториях Светлое и Зеленчукская ИПА РАН. Радиолокационные изображения формируются в специфической системе координат, связывающей доплеровское смещение частоты с задержкой по времени распространения составляющих эхо-сигнала, что затрудняет их привязку к селенографическим координатам. В данной работе предложен оригинальный метод преобразования частоты и задержки на изображениях к селенографической широте и долготе, использующий билинейную интерполяцию по эфемеридным узловым значениям с учетом длительного времени интегрирования. Выполнена оценка точности привязки построенных таким образом карт и проведено их сравнение с глобальной оптической картой Луны LROC WAC и мозаиками постоянно затененных областей LROC NAC. Показано, что радиолокационные карты на длине волны 4.2 см содержат скрытые на оптических изображениях детали лунной поверхности, находящиеся в реголите на глубинах до 1 м или в постоянно затененных областях южного полярного района Луны. Полученные в работе карты зеркальной и диффузной поляризационных составляющих эхо-сигналов Луны, а также карта распределения отношений круговых поляризаций доступны в сети Интернет по адресу http://luna.iaaras.ru/ и могут быть полезны для изучения геологической истории Луны, поиска ледяных отложений, а также выбора безопасных посадочных площадок при планировании будущих лунных миссий.
Keywords
About the authors
Y. S. Bondarenko
Federal State Budgetary Institution of Science Institute of Applied Astronomy of the Russian Academy of Sciences
Email: bondarenko@iaaras.ru
Saint Petersburg, Russia
D. A. Marshalov
Federal State Budgetary Institution of Science Institute of Applied Astronomy of the Russian Academy of SciencesSaint Petersburg, Russia
S. R. Pavlov
Federal State Budgetary Institution of Science Institute of Applied Astronomy of the Russian Academy of SciencesSaint Petersburg, Russia
A. L. Tolstoy
Federal State Budgetary Institution of Science Institute of Applied Astronomy of the Russian Academy of SciencesSaint Petersburg, Russia
References
- Бондаренко Ю.С., Маршалов Д.А., Зиньковский Б.М., Михайлов А.Г. Радиолокационные изображения постоянно затененных областей на южном полюсе Луны // Астрон. вестн. 2024а. Т. 58. № 4. С. 402–413. https://doi.org/10.31857/S0320930X24040045
- (Bondarenko Yu.S., Marshalov D.A., Zinkovsky B.M., Mikhailov A.G. Radar images of permanently shadowed regions at the south pole of the Moon // Sol. Syst. Res. 2024. V. 58. № 4. P. 394–403. https://doi.org/10.1134/S0038094624700217)
- Бондаренко Ю.С., Маршалов Д.А., Зиньковский Б.М., Михайлов А.Г. Радиолокационные изображения предполагаемых мест посадки космического аппарата на Луну // ПАЖ. 2024б. Т. 50. № 1. C. 106–112. https://doi.org/10.31857/S0320010824010096
- Калиткин Н.Н. Численные методы. М.: Наука, 1978. 512 с.
- Скворцов А.В., Мирза Н.С. Алгоритмы построения и анализа триангуляции. Томск: Изд-во Томск. ун-та, 2006. 168 с. https://doi.org/10.17273/BOOK.2006.1
- Bhiravarasu S., Chakraborty T., Putrevu D., Pandey D.K., Das A.K., Ramaujan V.M., Mehra R., Parasher P., Agrawal K.M., Gupta S., and 7 co-authors. Chandrayaan-2 Dual-frequency Synthetic Aperture Radar (DFSAR): Performance characterization and initial results // Planet. Sci. J. 2021. V. 2. P. 134 https://doi.org/10.3847/PSJ/abfdbf
- Cahill J.T.S., Thomson B.J., Patterson G.W., Bussey D.B.J., Neish C.D., Lopez N.R., Turner F.S., Aldridge T., McAdam M., Meyer H.M., and 5 co-authors. The Miniature Radio Frequency instrument’s (Mini-RF) global observations of Earth’s Moon // Icarus. 2014. V. 243. P. 173–190. https://doi.org/10.1016/j.icarus.2014.07.018
- Campbell B.A., Hawke B.R., Thompson T.W. Regolith composition and structure in the lunar maria: Results of long-wavelength radar studies // J. Geophys. Res. 1997. V. 102. Iss. E8. P. 19307–19320. https://doi.org/10.1029/97JE00858
- Campbell B.A., Campbell D.B., Margot J.L., Ghent R.R., Nolan M., Chandler J., Carter L.M., Stacy N.J.S. Focused 70-cm wavelength radar mapping of the Moon // IEEE Trans. 2007. V. 45. Iss. 12. P. 4032–4042. https://doi.org/10.1109/TGRS.2007.906582
- Campbell B.A., Carter L.M., Campbell D.B., Nolan M., Chandler J., Ghent R.R., Hawke B.R., Anderson R.F., Wells K. Earth-based 12.6-cm wavelength radar mapping of the Moon: New views of impact melt distribution and mare physical properties // Icarus. 2010. V. 208. Iss. 2. P. 565–573. https://doi.org/10.1016/j.icarus.2010.03.011
- Campbell B.A. High circular polarization ratios in radar scattering from geologic targets // J. Geophys. Res. 2012. V. 117. Iss. E6. Id. E06008. https://doi.org/10.1029/2012JE004061
- Campbell B.A., Jawin E.R., Morgan G.A. Refined 70-cm Earth-based lunar radar maps and a new interpretation of the Cruger-Sirsalis cryptomare // Icarus. 2025. V. 425. Id. 116324. https://doi.org/10.1016/j.icarus.2024.116324
- Carrier W.D., Olhoeft G.R., Mendell W. Physical properties of the lunar surface // Lunar Sourcebook. A User's Guide to the Moon. Cambridge Univ. Press, 1991. P. 475–594.
- Cisneros E., Awumah A., Brown H.M., Martin A.C., Paris K.N., Povilaitis R.Z., Boyd A.K., Robinson M.S. Lunar Reconnaissance Orbiter Camera permanently shadowed region imaging – Atlas and controlled mosaics // 48th Ann. Lunar and Planet. Sci. Conf. 2017. P. 2469.
- Estes N.M., Hanger C.D., Licht A.A., Bowman-Cisneros E. Lunaserv Web Map Service: History, implementation details, development, and uses // LPI Contrib. 2013. № 1719. P. 2609.
- Harmon J.K., Perillat P.J., Slade M.A. High-resolution radar imaging of Mercury’s north pole // Icarus. 2001. V. 149. Iss. 1. P. 1–15. https://doi.org/10.1006/icar.2000.6544
- Margot J.L., Campbell D.B., Jurgens R.F., Slade M.A. Topography of the lunar poles from radar interferometry: A survey of cold trap locations // Science. 1999. V. 284. Iss. 5420. P. 1658–1660. https://doi.org/10.1126/science.284.5420.1658
- Margot J.L., Campbell D.B., Jurgens R.F., Slade M.A. Digital elevation models of the Moon from Earth-based radar interferometry // IEEE Trans. 2000. V. 38. Iss. 2. P. 1122–1133. https://doi.org/10.1109/36.841991
- Mazarico E., Neumann G.A., Smith D.E., Zuber M.T., Torrence M.H. Illumination conditions of the lunar polar regions using LOLA topography // Icarus. 2011. V. 211. Iss. 2. P. 1066–1081. https://doi.org/10.1016/j.icarus.2010.10.030
- Pettengill G.H., Zisk S.H., Thompson T.W. The mapping of lunar radar scattering characteristics // Moon. 1974. V. 10. P. 3–16. https://doi.org/10.1007/BF00562016
- Pitjeva E., Pavlov D., Aksim D., Kan M. Planetary and lunar ephemeris EPM2021 and its significance for Solar system research // Proc. Int. Astron. Union. 2019. V. 15. (Symp. S364). P. 220–225. https://doi.org/10.1017/S1743921321001447
- Robinson M.S., Brylow S.M., Tschimmel M., Humm D., Lawrence S.J., Thomas P.C., Denevi B.W., Bowman-Cisneros E., Zerr J., Ravine M.A., and 13 co-authors. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview // Space Sci. Rev. 2010. V. 150. P. 81–124. https://doi.org/10.1007/s11214-010-9634-2
- Speyerer E.J., Robinson M.S., Denevi B.W., and the LROC Science Team. Lunar Reconnaissance Orbiter Camera global morphological map of the Moon // 42nd Ann. Lunar and Planet. Sci. Conf. 2011. P. 2387.
- Spudis P., Nozette S., Bussey B., Raney K., Winters H., Lichtenberg C.L., Marinelli W., Crusan J.C., Gates M.M. Mini-SAR: an imaging radar experiment for the Chandrayaan-1 mission to the Moon // Curr. Sci. 2009. V. 96. № 4. P. 533–539.
- Thompson T.W. Atlas of lunar radar maps at 70-cm wavelength // Moon. 1974. V. 10. Iss. 1. P. 51–85. https://doi.org/10.1007/BF00562018
- Thompson T.W. High resolution lunar radar map at 7.5 meter wavelength // Icarus. 1978. V. 36. Iss. 2. P. 174–188. https://doi.org/10.1016/0019-1035(78)90102-1
- Thompson T.W. High resolution lunar radar map at 70-cm wavelength // Earth, Moon, and Planets. 1987. V. 37. P. 59–70. https://doi.org/10.1007/BF00054324
- Vierinen J., Lehtinen M.S. 32-cm wavelength radar mapping of the Moon // 2009 European Radar Conference (EuRAD). 2009. Rome. Italy. P. 222–225.
- Vierinen J., Tveito T., Gustavsson B., Kesaraju S., Milla M. Radar images of the Moon at 6-meter wavelength // Icarus. 2017. V. 297. P. 179–188. https://doi.org/10.1016/j.icarus.2017.06.035
- Wilkinson S.R., Hansen C., Alexia B., Shamee B., Lloyd B., Beasley A., Brisken W., Paganelli F., Watts G., O'Neil K., Va W., Courtney P. A planetary radar system for detection and high-resolution imaging of nearby celestial bodies // Microwave J. 2022. V. 65. P. 1–22.
- Zisk S.H., Pettengill G.H., Catuna G.W. High-resolution radar maps of the lunar surface at 3.8-cm wavelength // Moon. 1974. V. 10. Iss. 1. P. 17–50. https://doi.org/10.1007/BF00562017
Supplementary files
