Hypercellular proinflammatory microenvironment inhibits etoposide-induced DNA damage in acute monocytic leukemia cells

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The emergence of resistance in acute monocytic leukemia (AML-M5) cells to the action of antitumor agents is one of the main reasons for the extremely low survival and curability of patients with diagnosed AML-M5. It is well known that AML cells have an “inflammatory” phenotype and form a unique pro-inflammatory microenvironment. Previously, we identified an increase in the resistance of THP-1 human AML-M5 cells to the action of DNA topoisomerase I and II inhibitors (topotecan, etoposide, doxorubicin) in an in vitro model simulating the conditions of the pro-inflammatory microenvironment – a three-dimensional long-term high-density cell culture. In this research, we investigated the mechanisms of this phenomenon using fluorescence microscopy and spectrophotometry, the DNA comet method, western blot analysis, differential gene expression analysis, and flow cytometry. The results showed that an increase in resistance to the action of DNA topoisomerase inhibitors, in particular etoposide, in THP-1 AML-M5 cells in a hypercellular proinflammatory microenvironment is realized by reducing the accumulation of single- and double-stranded DNA breaks and, accordingly, the response to DNA damage. It may also be due to the pronounced activation of the signaling pathways of interferon types 1 and 2, NF-κB/STAT-dependent signaling pathways, occurring against the background of a significant suppression of the activity of transcription factors of the Myc and E2F families. The results of this work open up new ideas about the role of pro-inflammatory activation in increasing the resistance of AML cells to death induced by the action of DNA topoisomerase inhibitors.

Texto integral

Acesso é fechado

Sobre autores

M. Kobyakova

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: kobyakovami@gmail.com
Rússia, 142290 Pushchino, Moscow Region

K. Krasnov

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences; Institute of Clinical and Experimental Lymphology – Branch of ICIG SB RAS

Email: kobyakovami@gmail.com
Rússia, 142290 Pushchino, Moscow Region; 630060 Novosibirsk

O. Krestinina

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: kobyakovami@gmail.com
Rússia, 142290 Pushchino, Moscow Region

Yu. Baburina

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: kobyakovami@gmail.com
Rússia, 142290 Pushchino, Moscow Region

A. Senotov

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: kobyakovami@gmail.com
Rússia, 142290 Pushchino, Moscow Region

Ya. Lomovskaya

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: kobyakovami@gmail.com
Rússia, 142290 Pushchino, Moscow Region

E. Meshcheryakova

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences; Institute of Cell Biophysics of the Russian Academy of Sciences

Email: kobyakovami@gmail.com
Rússia, 142290 Pushchino, Moscow Region; 142290 Pushchino, Moscow Region

A. Lomovsky

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: kobyakovami@gmail.com
Rússia, 142290 Pushchino, Moscow Region

A. Zvyagina

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: kobyakovami@gmail.com
Rússia, 142290 Pushchino, Moscow Region

K. Pyatina

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: kobyakovami@gmail.com
Rússia, 142290 Pushchino, Moscow Region

I. Fadeeva

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: kobyakovami@gmail.com
Rússia, 142290 Pushchino, Moscow Region

R. Fadeev

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: kobyakovami@gmail.com
Rússia, 142290 Pushchino, Moscow Region

Bibliografia

  1. Zhang, R., Lee, J. Y., Wang, X., Xu, W., Hu, X., Lu, X., Niu, Y., Tang, R., Li, S., and Li, Y. (2014) Identification of novel genomic aberrations in AML-M5 in a level of array CGH, PLoS One, 9, e87637, https://doi.org/10.1371/journal.pone.0087637.
  2. Varotto, E., Munaretto, E., Stefanachi, F., Della Torre, F., and Buldini, B. (2022) Diagnostic challenges in acute monoblastic/monocytic leukemia in children, Front. Pediatr., 10, 911093, https://doi.org/10.3389/fped.2022.911093.
  3. Liu, L. P., Zhang, A. L., Ruan, M., Chang, L. X., Liu, F., Chen, X., Qi, B. Q., Zhang, L., Zou, Y., Chen, Y. M., Chen, X. J., Yang, W. Y., Guo, Y., and Zhu, X. F. (2020) Prognostic stratification of molecularly and clinically distinct subgroup in children with acute monocytic leukemia, Cancer Med., 9, 3647-3655, https://doi.org/10.1002/cam4.3023.
  4. Shimony, S., Stahl, M., and Stone, R. M. (2023) Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management, Am. J. Hematol., 98, 502-526, https://doi.org/10.1002/ajh.26822.
  5. Arwanih, E. Y., Louisa, M., Rinaldi, I., and Wanandi, S. I. (2022) Resistance mechanism of acute myeloid leukemia cells against daunorubicin and cytarabine: a literature review, Cureus, 14, e33165, https://doi.org/10.7759/cureus.33165.
  6. Ganesan, S., Mathews, V., and Vyas, N. (2022) Microenvironment and drug resistance in acute myeloid leukemia: do we know enough? Int. J. Cancer, 150, 1401-1411, https://doi.org/10.1002/ijc.33908.
  7. Bolandi, S. M., Pakjoo, M., Beigi, P., Kiani, M., Allahgholipour, A., Goudarzi, N., Khorashad, J. S., and Eiring, A. M. (2021) A role for the bone marrow microenvironment in drug resistance of acute myeloid leukemia, Cells, 10, 2833, https://doi.org/10.3390/cells10112833.
  8. Pourrajab, F., Zare-Khormizi, M. R., Hekmatimoghaddam, S., and Hashemi, A. S. (2020) Molecular targeting and rational chemotherapy in acute myeloid leukemia, J. Exp. Pharmacol., 12, 107-128, https://doi.org/10.2147/ JEP.S254334.
  9. Saultz, J. N., and Garzon, R. (2016) Acute myeloid leukemia: a concise review, J. Clin. Med., 5, 33, https://doi.org/10.3390/jcm503003.
  10. Zhang, W., Gou, P., Dupret, J. M., Chomienne, C., and Rodrigues-Lima, F. (2021) Etoposide, an anticancer drug involved in therapy-related secondary leukemia: enzymes at play, Transl. Oncol., 14, e101169, https://doi.org/10.1016/j.tranon.2021.101169.
  11. McKie, S. J., Neuman, K. C., and Maxwell, A. (2021) DNA topoisomerases: Advances in understanding of cellular roles and multi-protein complexes via structure-function analysis, Bioessays, 43, e2000286, https://doi.org/ 10.1002/bies.202000286.
  12. Liang, X., Wu, Q., Luan, S., Yin, Z., He, C., Yin, L., Zou, Y., Yuan, Z., Li, L., Song, X., He, M., Lv, C., and Zhang, W. (2019) A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade, Eur. J. Med. Chem., 171, 129-168, https://doi.org/10.1016/j.ejmech.2019.03.034.
  13. Tsuchiya, S., Yamabe, M., Yamaguchi, Y., Kobayashi, Y., Konno, T., and Tada, K. (1980) Establishment and characterization of a human acute monocytic leukemia cell line (THP-1), Int. J. Cancer, 26, 171-176, https://doi.org/10.1002/ijc.2910260208.
  14. Yu, F., Chen, Y., Zhou, M., Liu, L., Liu, B., Liu, J., Pan, T., Luo, Y., Zhang, X., Ou, H., Huang, W., Lv, X., Xi, Z., Xiao, R., Li, W., Cao, L., Ma, X., Zhang, J., Lu, L., and Zhang, H. (2024) Generation of a new therapeutic D-peptide that induces the differentiation of acute myeloid leukemia cells through A TLR-2 signaling pathway, Cell Death Discov., 10, 51, https://doi.org/10.1038/s41420-024-01822-w.
  15. Xie, C., Drenberg, C., Edwards, H., Caldwell, J. T., Chen, W., Inaba, H., Xu, X., Buck, S. A., Taub, J. W., Baker, S. D., and Ge, Y. (2013) Panobinostat enhances cytarabine and daunorubicin sensitivities in AML cells through suppressing the expression of BRCA1, CHK1, and Rad51, PLoS One, 8, e79106, https://doi.org/10.1371/journal.pone.0079106.
  16. Giri, B., Gupta, V. K., Yaffe, B., Modi, S., Roy, P., Sethi, V., Lavania, S. P., Vickers, S. M., Dudeja, V., Banerjee, S., Watts, J., and Saluja, A. (2019) Pre-clinical evaluation of Minnelide as a therapy for acute myeloid leukemia, J. Transl. Med., 17, 163, https://doi.org/10.1186/s12967-019-1901-8.
  17. Martino, V., Tonelli, R., Montemurro, L., Franzoni, M., Marino, F., Fazzina, R., and Pession, A. (2006) Down-regulation of MLL-AF9, MLL and MYC expression is not obligatory for monocyte-macrophage maturation in AML-M5 cell lines carrying t(9;11)(p22;q23), Oncol. Rep., 15, 207-211, https://doi.org/10.3892/or.15.1.207.
  18. Umeda, M., Ma, J., Westover, T., Ni, Y., Song, G., Maciaszek, J. L., Rusch, M., Rahbarinia, D., Foy, S., Huang, B. J., Walsh, M. P., Kumar, P., Liu, Y., Yang, W., Fan, Y., Wu, G., Baker, S. D., Ma, X., Wang, L., Alonzo, T. A., and Klco, J. M. (2024) A new genomic framework to categorize pediatric acute myeloid leukemia, Nat. Genet., 56, 281-293, https://doi.org/10.1038/s41588-023-01640-3.
  19. Drexler, H. G., Quentmeier, H., and MacLeod, R. A. (2004) Malignant hematopoietic cell lines: in vitro models for the study of MLL gene alterations, Leukemia, 18, 227-232, https://doi.org/10.1038/sj.leu.2403236.
  20. Pang, J. M., Chien, P. C., Kao, M. C., Chiu, P. Y., Chen, P. X., Hsu, Y. L., Liu, C., Liang, X., and Lin, K. T. (2023) MicroRNA-708 emerges as a potential candidate to target undruggable NRAS, PLoS One, 18, e0284744, https://doi.org/10.1371/journal.pone.0284744.
  21. Kasai, F., Hirayama, N., Fukushima, M., Kohara, A., and Nakamura, Y. (2022) THP-1 reference data: proposal of an in vitro branched evolution model for cancer cell lines, Int. J. Cancer, 151, 463-472, https://doi.org/10.1002/ijc.34019.
  22. Sano, H., Shimada, A., Taki, T., Murata, C., Park, M. J., Sotomatsu, M., Tabuchi, K., Tawa, A., Kobayashi, R., Horibe, K., Tsuchida, M., Hanada, R., Tsukimoto, I., and Hayashi, Y. (2012) RAS mutations are frequent in FAB type M4 and M5 of acute myeloid leukemia, and related to late relapse: a study of the Japanese Childhood AML Cooperative Study Group, Int. J. Hematol., 95, 509-515, https://doi.org/10.1007/s12185-012-1033-x.
  23. Laursen, A. C., Sandahl, J. D., Kjeldsen, E., Abrahamsson, J., Asdahl, P., Ha, S. Y., Heldrup, J., Jahnukainen, K., Jónsson, Ó. G., Lausen, B., Palle, J., Zeller, B., Forestier, E., and Hasle, H. (2016) Trisomy 8 in pediatric acute myeloid leukemia: A NOPHO-AML study, Genes Chromosomes Cancer, 55, 719-726, https://doi.org/10.1002/gcc.22373.
  24. Odero, M. D., Zeleznik-Le, N. J., Chinwalla, V., and Rowley, J. D. (2000) Cytogenetic and molecular analysis of the acute monocytic leukemia cell line THP-1 with an MLL-AF9 translocation, Genes Chromosomes Cancer, 29, 333-338, https://doi.org/10.1002/1098-2264(2000)9999:9999<::AID-GCC1040>3.0.CO;2-Z.
  25. Loghavi, S., Kanagal-Shamanna, R., Khoury, J. D., Medeiros, L. J., Naresh, K. N., Nejati, R., Patnaik, M. M., and WHO 5th Edition Classification Project (2024) Fifth Edition of the World Health Classification of tumors of the hematopoietic and lymphoid tissue: myeloid neoplasms, Mod. Pathol., 37, 100397, https://doi.org/10.1016/ j.modpat.2023.100397.
  26. Kobyakova, M., Lomovskaya, Y., Senotov, A., Lomovsky, A., Minaychev, V., Fadeeva, I., Shtatnova, D., Krasnov, K., Zvyagina, A., Odinokova, I., Akatov, V., and Fadeev, R. (2022) The increase in the drug resistance of acute myeloid leukemia THP-1 cells in high-density cell culture is associated with inflammatory-like activation and anti-apoptotic Bcl-2 proteins, Int. J. Mol. Sci., 23, 7881, https://doi.org/10.3390/ijms23147881.
  27. Kobyakova, M. I., Evstratova, Y. V., Senotov, A. S., Lomovsky, A. I., Minaichev, V. V., Zvyagina, A. I., Solovieva, M. E., Fadeeva, I. S., Akatov, V. S., and Fadeev, R. S. (2021) Appearance of signs of differentiation and pro-inflammatory phenotype in acute myeloid leukemia cells THP-1 with an increase in their TRAIL resistance in cell aggregates in vitro, Biochem. (Moscow) Suppl. Ser. Membr. Cell Biol., 15, 97-105, https://doi.org/10.1134/S1990747821010050.
  28. Lu, S., Li, Y., Zhu, C., Wang, W., and Zhou, Y. (2022) Managing cancer drug resistance from the perspective of inflammation, J. Oncol, 2022, 3426407, https://doi.org/10.1155/2022/3426407.
  29. Kidane, D., Chae, W. J., Czochor, J., Eckert, K. A., Glazer, P. M., Bothwell, A. L., and Sweasy, J. B. (2014) Interplay between DNA repair and inflammation, and the link to cancer, Crit. Rev. Biochem. Mol. Boil., 49, 116-139, https://doi.org/10.3109/10409238.2013.875514.
  30. Fontes, F. L., Pinheiro, D. M., Oliveira, A. H., Oliveira, R. K., Lajus, T. B., and Agnez-Lima, L. F. (2015) Role of DNA repair in host immune response and inflammation, Mutat. Res. Rev. Mutat. Res., 763, 246-257, https://doi.org/10.1016/j.mrrev.2014.11.004.
  31. Pazzaglia, S., and Pioli, C. (2019) Multifaceted role of PARP-1 in DNA repair and inflammation: pathological and therapeutic implications in cancer and non-cancer diseases, Cells, 9, 41, https://doi.org/10.3390/cells9010041.
  32. Kobyakova, M. I., Senotov, A. S., Krasnov, K. S., Lomovskaya, Y. V., Odinokova, I. V., Kolotova, A. A., Ermakov, A. M., Zvyagina, A. I., Fadeeva, I. S., Fetisova, E. I., Akatov, V. S., and Fadeev, R. S. (2024) Pro-Inflammatory activation suppresses TRAIL-induced apoptosis of acute myeloid leukemia cells, Biochemistry (Moscow), 89, 431-440, https://doi.org/10.1134/S0006297924030040.
  33. Kruger, N. J. (1994) The Bradford method for protein quantitation, Methods Mol. Boil., 32, 9-15, https://doi.org/10.1385/0-89603-268-X:9.
  34. Рылова Ю. В., Буравкова Л. Б. (2013) Постоянное культивирование мультипотентных мезенхимных стромальных клеток при пониженном содержании кислорода, Цитология, 55, 852-860.
  35. Lomovskaya, Y. V., Krasnov, K. S., Kobyakova, M. I., Kolotova, A. A., Ermakov, A. M., Senotov, A. S., Fadeeva, I. S., Fetisova, E. I., Lomovsky, A. I., Zvyagina, A. I., Akatov, V. S., and Fadeev, R. S. (2024) Studying signaling pathway activation in TRAIL-resistant macrophage-like acute myeloid leukemia cells, Acta Naturae, 16, 48-58, https://doi.org/10.32607/actanaturae.27317.
  36. Bottomly, D., Long, N., Schultz, A. R., Kurtz, S. E., Tognon, C. E., Johnson, K., Abel, M., Agarwal, A., Avaylon, S., Benton, E., Blucher, A., Borate, U., Braun, T. P., Brown, J., Bryant, J., Burke, R., Carlos, A., Chang, B. H., Cho, H. J., Christy, S., Coblentz, C., Cohen, A. M., d’Almeida, A., Cook, R., Danilov, A., Dao, K. T., Degnin, M., Dibb, J., Eide, C. A., English, I., Hagler, S., Harrelson, H., Henson, R., Ho, H., Joshi, S. K., Junio, B., Kaempf, A., Kosaka, Y., Laderas, T., Lawhead, M., Lee, H., Leonard, J. T., Lin, C., Lind, E. F., Liu, S. Q., Lo, P., Loriaux, M. M., Luty, S., Maxson, J. E., Macey, T., Martinez, J., Minnier, J., Monteblanco, A., Mori, M., Morrow, Q., Nelson, D., Ramsdill, J., Rofelty, A., Rogers, A., Romine, K. A., Ryabinin, P., Saultz, J. N., Sampson, D. A., Savage, S.L., Schuff, R., Searles, R., Smith, R. L., Spurgeon, S. E., Sweeney, T., Swords, R. T., Thapa, A., Thiel-Klare, K., Traer, E., Wagner, J., Wilmot, B., Wolf, J., Wu, G., Yates, A., Zhang, H., Cogle, C. R., Collins, R.H., Deininger, M.W., Hourigan, C.S., Jordan, C. T., Lin, T. L., Martinez, M. E., Pallapati, R .R., Pollyea, D. A., Pomicter, A. D., Watts, J. M., Weir, S. J., Druker, B. J., McWeeney, S. K., and Tyner, J. W. (2022) Integrative analysis of drug response and clinical outcome in acute myeloid leukemia, Cancer Cell, 40, 850-864.e9, https://doi.org/10.1016/j.ccell.2022.07.002.
  37. Benjamini, Y., and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Statist. Soc., 57, 289-300, https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.
  38. Li, L. Y., Guan, Y. D., Chen, X. S., Yang, J. M., and Cheng, Y. (2021) DNA repair pathways in cancer therapy and resistance, Front. Pharmacol, 11, 629266, https://doi.org/10.3389/fphar.2020.629266.
  39. Jurkovicova, D., Neophytou, C. M., Gašparović, A. Č., and Gonçalves, A. C. (2022) DNA damage response in cancer therapy and resistance: challenges and opportunities, Int. J. Mol. Sci., 23, 14672, https://doi.org/10.3390/ijms232314672.
  40. Nastasi, C., Mannarino, L., and D’Incalci, M. (2020) DNA damage response and immune defense, Int. J. Mol. Sci., 21, 7504, https://doi.org/10.3390/ijms21207504.
  41. Ronco, C., Martin, A. R., Demange, L., and Benhida, R. (2016) ATM, ATR, CHK1, CHK2 and WEE1 inhibitors in cancer and cancer stem cells, Medchemcomm., 8, 295-319, https://doi.org/10.1039/C6MD00439C.
  42. Ryan, E. L., Hollingworth, R., and Grand, R. J. (2016) Activation of the DNA damage response by RNA viruses, Biomolecul., 6, 2, https://doi.org/10.3390/biom6010002.
  43. Day, T. W., Wu, C. H., and Safa, A. R. (2009) Etoposide induces protein kinase Cdelta- and caspase-3-dependent apoptosis in neuroblastoma cancer cells, Mol. Pharmacol., 76, 632-640, https://doi.org/10.1124/mol.109.054999.
  44. Elmore, S. (2007) Apoptosis: a review of programmed cell death, Toxicol. Pathol., 35, 495-516, https://doi.org/10.1080/01926230701320337.
  45. Herceg, Z., and Wang, Z. Q. (1999) Failure of poly(ADP-ribose) polymerase cleavage by caspases leads to induction of necrosis and enhanced apoptosis, Mol. Cell. Boil., 19, 5124-5133, https://doi.org/10.1128/mcb.19.7.5124.
  46. Oberhammer, F. A., Hochegger, K., Fröschl, G., Tiefenbacher, R., and Pavelka, M. (1994) Chromatin condensation during apoptosis is accompanied by degradation of lamin A + B, without enhanced activation of cdc2 kinase, J. Cell Boil., 126, 827-837, https://doi.org/10.1083/jcb.126.4.827.
  47. Bae, S., Park, P. S. U., Lee, Y., Mun, S. H., Giannopoulou, E., Fujii, T., Lee, K. P., Violante, S. N., Cross, J. R., and Park-Min, K. H. (2021) MYC-mediated early glycolysis negatively regulates proinflammatory responses by controlling IRF4 in inflammatory macrophages, Cell Rep., 35, 109264, https://doi.org/10.1016/j.celrep.2021.109264.
  48. Liu, L., Lu, Y., Martinez, J., Bi, Y., Lian, G., Wang, T., Milasta, S., Wang, J., Yang, M., Liu, G., Green, D. R., and Wang, R. (2016) Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent, Proc. Natl. Acad. Sci. USA, 113, 1564-1569, https://doi.org/10.1073/pnas.1518000113.
  49. Lee, H. Y., Cha, J., Kim, S. K., Park, J. H., Song, K. H., Kim, P., and Kim, M. Y. (2019) c-MYC drives breast cancer metastasis to the brain, but promotes synthetic lethality with TRAIL, Mol. Cancer Res., 17, 544-554, https://doi.org/10.1158/1541-7786.MCR-18-0630.
  50. Buzun, K., Bielawska, A., Bielawski, K., and Gornowicz, A. (2020) DNA topoisomerases as molecular targets for anticancer drugs, J. Enzyme Inhib. Med. Chem., 35, 1781-1799, https://doi.org/10.1080/14756366.2020.1821676.
  51. Grant, C. H., and Gourley, C. (2015) Relevant cancer diagnoses, commonly used chemotherapy agents and their biochemical mechanisms of action, Cancer Treat. Ovary, 21-33, https://doi.org/10.1016/B978-0-12-801591-9.00002-3.
  52. Jayashree, S., Nirekshana, K., Guha, G., and Bhakta-Guha, D. (2018) Cancer chemotherapeutics in rheumatoid arthritis: a convoluted connection, Biomed. Pharmacother., 102, 894-911, https://doi.org/10.1016/j.biopha.2018.03.123.
  53. Lei, J., Yin, X., Shang, H., and Jiang, Y. (2019) IP-10 is highly involved in HIV infection, Cytokine, 115, 97-103, https://doi.org/10.1016/j.cyto.2018.11.018.
  54. Phillips, A. C., Ernst, M. K., Bates, S., Rice, N. R., and Vousden, K. H. (1999) E2F-1 potentiates cell death by blocking antiapoptotic signaling pathways, Mol. Cell, 4, 771-781, https://doi.org/10.1016/S1097-2765(00)80387-1.
  55. Luoto, K. R., Meng, A. X., Wasylishen, A. R., Zhao, H., Coackley, C. L., Penn, L. Z., and Bristow, R. G. (2010) Tumor cell kill by c-MYC depletion: role of MYC-regulated genes that control DNA double-strand break repair, Cancer Res., 70, 8748-8759, https://doi.org/10.1158/0008-5472.CAN-10-0944.
  56. Bretones, G., Delgado, M. D., and León, J. (2015) Myc and cell cycle control, Biochim. Biophys. Acta, 1849, 506-516, https://doi.org/10.1016/j.bbagrm.2014.03.013.
  57. Chiron, M., Demur, C., Pierson, V., Jaffrezou, J. P., Muller, C., Saivin, S., Bordier, C., Bousquet, C., Dastugue, N., and Laurent, G. (1992) Sensitivity of fresh acute myeloid leukemia cells to etoposide: relationship with cell growth characteristics and DNA single-strand breaks, Blood, 80, 1307-1315. https://doi.org/10.1182/blood.v80.5.1307.1307.
  58. Bromberg, K. D., Burgin, A. B., and Osheroff, N. (2003) A two-drug model for etoposide action against human topoisomerase IIalpha, J. Boil. Chem., 278, 7406-7412, https://doi.org/10.1074/jbc.M212056200.
  59. Muslimović, A., Nyström, S., Gao, Y., and Hammarsten, O. (2009) Numerical analysis of etoposide induced DNA breaks, PLoS One, 4, e5859, https://doi.org/10.1371/journal.pone.0005859.
  60. Berger, J. M., Gamblin, S. J., Harrison, S. C., and Wang, J. C. (1996) Structure and mechanism of DNA topoisomerase II, Nature, 379, 225-232, https://doi.org/10.1038/379225a0.
  61. Tounekti, O., Kenani, A., Foray, N., Orlowski, S., and Mir, L. M. (2001) The ratio of single- to double-strand DNA breaks and their absolute values determine cell death pathway, Br. J. Cancer, 84, 1272-1279, https://doi.org/10.1054/bjoc.2001.1786.
  62. Lee, J. H., and Paull, T. T. (2005) ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex, Science, 308, 551-554, https://doi.org/10.1126/science.1108297.
  63. Shibata, A., and Jeggo, P. A. (2021) ATM’s role in the repair of DNA double-strand breaks, Genes, 12, 1370, https://doi.org/10.3390/genes12091370.
  64. Maréchal, A., and Zou, L. (2013) DNA damage sensing by the ATM and ATR kinases, Cold Spring Harb. Perspect. Boil., 5, a012716, https://doi.org/10.1101/cshperspect.a012716.
  65. Ganapathi, R. N., and Ganapathi, M. K. (2013) Mechanisms regulating resistance to inhibitors of topoisomerase II, Front. Pharmacol., 4, 89, https://doi.org/10.3389/fphar.2013.00089.
  66. Sullivan, D. M., Glisson, B. S., Hodges, P. K., Smallwood-Kentro, S., and Ross, W. E. (1986) Proliferation dependence of topoisomerase II mediated drug action, Biochem., 25, 2248-2256, https://doi.org/10.1021/bi00356a060.
  67. Dingemans, A. M., Pinedo, H. M., and Giaccone, G. (1998) Clinical resistance to topoisomerase-targeted drugs, Biochim. Biophys. Acta, 1400, 275-288, https://doi.org/10.1016/S0167-4781(98)00141-9.
  68. Larsen, A. K., Skladanowski, A., and Bojanowski, K. (1996) The roles of DNA topoisomerase II during the cell cycle, Prog. Cell Cycle Res., 2, 229-239, https://doi.org/10.1007/978-1-4615-5873-6_22.
  69. Lee, J. H., and Berger, J. M. (2019) Cell cycle-dependent control and roles of DNA topoisomerase II, Genes, 10, 859, https://doi.org/10.3390/genes10110859.
  70. Kimura, K., Saijo, M., Ui, M., and Enomoto, T. (1994) Growth state- and cell cycle-dependent fluctuation in the expression of two forms of DNA topoisomerase II and possible specific modification of the higher molecular weight form in the M phase, J. Boil. Chem, 269, 1173-1176, https://doi.org/10.1016/S0021-9258(17)42238-1.
  71. Singh, B. N., Mudgil, Y., John, R., Achary, V. M., Tripathy, M. K., Sopory, S. K., Reddy, M. K., and Kaul, T. (2015) Cell cycle stage-specific differential expression of topoisomerase I in tobacco BY-2 cells and its ectopic overexpression and knockdown unravels its crucial role in plant morphogenesis and development, Plant Sci., 240, 182-192, https://doi.org/10.1016/j.plantsci.2015.09.016.
  72. Das, S. K., Kuzin, V., Cameron, D. P., Sanford, S., Jha, R. K., Nie, Z., Rosello, M. T., Holewinski, R., Andresson, T., Wisniewski, J., Natsume, T., Price, D. H., Lewis, B. A., Kouzine, F., Levens, D., and Baranello, L. (2022) MYC assembles and stimulates topoisomerases 1 and 2 in a “topoisome”, Mol. Cell, 82, 140-158.e12, https://doi.org/10.1016/ j.molcel.2021.11.016.
  73. Jiao, W., Lin, H. M., Timmons, J., Nagaich, A. K., Ng, S. W., Misteli, T., and Rane, S. G. (2005) E2F-dependent repression of topoisomerase II regulates heterochromatin formation and apoptosis in cells with melanoma-prone mutation, Cancer Res., 65, 4067-4077, https://doi.org/10.1158/0008-5472.CAN-04-3999.
  74. Kotredes, K. P., and Gamero, A. M. (2013) Interferons as inducers of apoptosis in malignant cells, J. Interferon Cytokine Res., 33, 162-170, https://doi.org/10.1089/jir.2012.0110.
  75. Cheon, H., Wang, Y., Wightman, S. M., Jackson, M. W., and Stark, G. R. (2023) How cancer cells make and respond to interferon-I, Trends Cancer, 9, 83-92, https://doi.org/10.1016/j.trecan.2022.09.003.
  76. Di Franco, S., Turdo, A., Todaro, M., and Stassi, G. (2017) Role of type I and ii interferons in colorectal cancer and melanoma, Front. Immune., 8, 878, https://doi.org/10.3389/fimmu.2017.00878.
  77. Cheon, H., Holvey-Bates, E. G., McGrail, D. J., and Stark, G. R. (2021) PD-L1 sustains chronic, cancer cell-intrinsic responses to type I interferon, enhancing resistance to DNA damage, Proc. Natl. Acad. Sci. USA, 118, e2112258118, https://doi.org/10.1073/pnas.2112258118.
  78. Erdal, E., Haider, S., Rehwinkel, J., Harris, A. L., and McHugh, P. J. (2017) A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1, Genes Dev., 31, 353-369, https://doi.org/10.1101/gad.289769.116.
  79. Gaston, J., Cheradame, L., Yvonnet, V., Deas, O., Poupon, M. F., Judde, J. G., Cairo, S., and Goffin, V. (2016) Intracellular STING inactivation sensitizes breast cancer cells to genotoxic agents, Oncotarget, 7, 77205-77224, https://doi.org/10.18632/oncotarget.12858.
  80. Godwin, P., Baird, A. M., Heavey, S., Barr, M. P., O’Byrne, K. J., and Gately, K. (2013) Targeting nuclear factor-kappa B to overcome resistance to chemotherapy, Front. Oncol., 3, 120, https://doi.org/10.3389/fonc.2013.00120.
  81. Pfeffer, L. M. (2011) The role of nuclear factor κB in the interferon response, J. Interferon Cytokine Res., 31, 553-559, https://doi.org/10.1089/jir.2011.0028.
  82. Willemsen, J., Neuhoff, M. T., Hoyler, T., Noir, E., Tessier, C., Sarret, S., Thorsen, T. N., Littlewood-Evans, A., Zhang, J., Hasan, M., Rush, J. S., Guerini, D., and Siegel, R. M. (2021) TNF leads to mtDNA release and cGAS/STING-dependent interferon responses that support inflammatory arthritis, Cell Rep., 37, 109977, https://doi.org/10.1016/j.celrep.2021.109977.
  83. Wu, Y., and Zhou, B. P. (2010) TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion, British J. Cancer, 102, 639-644, https://doi.org/10.1038/sj.bjc.6605530.
  84. Guha, M., and Mackman, N. (2001) LPS induction of gene expression in human monocytes, Cell. Signal., 13, 85-94, https://doi.org/10.1016/S0898-6568(00)00149-2.
  85. García-González, V., and Mas-Oliva, J. A. (2017) Novel β-adaptin/c-Myc complex formation modulated by oxidative stress in the control of the cell cycle in macrophages and its implication in atherogenesis, Sci. Rep., 7, 13442, https://doi.org/10.1038/s41598-017-13880-5.
  86. Ankers, J. M., Awais, R., Jones, N. A., Boyd, J., Ryan, S., Adamson, A. D., Harper, C. V., Bridge, L., Spiller, D. G., Jackson, D. A., Paszek, P., Sée, V., and White, M. R. (2016) Dynamic NF-κB and E2F interactions control the priority and timing of inflammatory signalling and cell proliferation, eLife, 5, e10473, https://doi.org/10.7554/eLife.10473.
  87. Araki, K., Kawauchi, K., and Tanaka, N. (2008) IKK/NF-kappaB signaling pathway inhibits cell-cycle progression by a novel Rb-independent suppression system for E2F transcription factors, Oncogene, 27, 5696-5705, https://doi.org/10.1038/onc.2008.184.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Analysis of qualitative and quantitative characteristics of induced DNA damage in THP-1 NPC and THP-1 VPC cells before and after 2, 4, and 8 h of incubation with 8 μM etoposide. Viability of THP-1 NPC and THP-1 VPC cells before and after 2, 4, and 8 h of incubation with 8 μM etoposide (a). Percentage of cells containing single-stranded (b) and double-stranded (d) DNA breaks in the THP-1 NPC and THP-1 VPC population before and after 2, 4, and 8 h of incubation with 8 μM etoposide. The degree of DNA damage (% DNA in tail) during the formation of single-stranded (r) and double-stranded (d) breaks. Data are presented as mean ± SD (n ≥ 5); *p < 0.05 – compared with THP-1 NPC cells

Baixar (622KB)
3. Fig. 2. Content of pATR (Ser428), total ATR (a); pATM (Ser428), total ATM (b); pBRCA1 (Ser1524), total Brca1 (c); pChk1 (Ser139), total Chk1 (r); pChk2 (Thr68), total Chk2 (e); pH2AX (Ser139), total H2A.X (e) in THP-1 VPC and THP-1 NPC cells before and after 2, 4, and 8 h of incubation with 8 μM etoposide

Baixar (737KB)
4. Fig. 3. Analysis of etoposide-induced pro-apoptotic signaling pathway activation in THP-1 NPC and THP-1 VPC cells. Mean fluorescence intensity (MFI) of AMC in THP-1 NPC and THP-1 VPC cells before and after 2, 4, and 8 h of incubation with 8 μM etoposide (a). Percentage of cells containing cleaved PARP1/2 (Asp214) (b) and aberrant nuclei (c) in the THP-1 NPC and THP-1 VPC population before and after 2, 4, and 8 h of incubation with 8 μM etoposide. Data are presented as mean ± SD (n ≥ 5); * p <0.05 – compared to THP-1 NPC cells

Baixar (349KB)
5. Fig. 4. GSEA of gene sets in resistant OMol cells relative to sensitive OMol cells. GSEA results for collection H (a) for THP-1 VPC and OMol cells from treatment-resistant patients relative to THP-1 NPC and OMol cells from treatment-responsive patients, respectively. The circle size corresponds to the number of genes with variable expression relative to the total number of genes in the set. NER – normalized enrichment index; FDR ≤ 0.05. GSEA results for the KEGG, Reactome, GOBP, and WP collections (b) and the C3.TFT collection (c–g) for THP-1 VPC cells relative to THP-1 NPC cells

Baixar (1MB)
6. Fig. 5. The number of THP-1 cells in the culture depending on the cultivation time. HDC – high-density cell culture; LDC – low-density cell culture. Data are presented as mean ± SD (n ≥ 5)

Baixar (132KB)
7. Appendix 1
Baixar (13KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025