Тритий от молекулы до биосферы. 2. Подходы к дозиметрии
- Авторы: Антонова Е.В.1
-
Учреждения:
- Институт экологии растений и животных УрО РАН
- Выпуск: № 5 (2024)
- Страницы: 354-378
- Раздел: Статьи
- URL: https://rjmseer.com/0367-0597/article/view/671707
- DOI: https://doi.org/10.31857/S0367059724050033
- EDN: https://elibrary.ru/WCHHXU
- ID: 671707
Цитировать
Аннотация
Тритий (3H) имеет естественное и техногенное происхождение. Высокая миграционная способность, наличие разных физических форм и химических соединений, сродство с органическими молекулами и включенность в обменные процессы в биосфере привлекают внимание к этому изотопу в сфере радиационной защиты живых организмов и человека. Проанализированы данные 324 публикаций (230 из них – в Приложении)[1] на основе лабораторных и полевых исследований для понимания подходов к методологии оценки доз 3H у референтных групп организмов растений и животных, обозначенных в 108-й Публикации Международного комитета по радиационной защите. Описаны базовые принципы и особенности расчета мощности поглощенной дозы от неорганических и органических форм и соединений 3H для разных уровней биологической организации. Выявлено более половины исследований, не касающихся вопросов дозиметрии, но анализирующих радиобиологические эффекты. Перспективы дальнейших исследований могут быть связаны с дифференцированным подходом при оценке доз от разных форм и соединений 3H, обеспечением более тесного контакта между лабораторными и полевыми исследованиями, а также смещением фокуса внимания с уровня референтных организмов на уровень популяций. Полученные результаты найдут свое применение при постановке проблем в области радиоэкологии и радиобиологии, а также при усовершенствовании норм радиационной безопасности, связанных с работой действующих предприятий атомной промышленности и развитием объектов новой ядерной техники.
[1] Дополнительная информация доступна по doi для авторизованных пользователей.
Ключевые слова
Полный текст

Об авторах
Е. В. Антонова
Институт экологии растений и животных УрО РАН
Автор, ответственный за переписку.
Email: selena@ipae.uran.ru
Россия, 620144, Екатеринбург, ул. 8 Марта, 202
Список литературы
- Eyrolle F., Ducros L., Le Dizès S. et al. An updated review on tritium in the environment // J. of Environ. Radioact. 2018. V. 181. P. 128–137.
- Okada S., Momoshima N. Overview of tritium: characteristics, sources, and problems // Health Physics. 1993. V. 65. № 6. P. 595–609.
- Ferreira M.F., Turner A., Vernon E.L. et al. Tritium: its relevance, sources and impacts on non-human biota // Science of the Total Environ. 2023. V. 876. Art. 162816.
- Sources, effects and risks of ionizing radiation. Report 2016 with scientific annexes A, B, C and D. N.Y.: UNSCEAR, 2017. 516 p.
- Antonova E.V., Antonov K.L., Vasyanovich M.E. et al. Tritium from molecule to biosphere. 1. Patterns of behavior in the environment // Russ. J. of Ecology. 2022. V. 53. № 4. P. 253–284.
- Kim S.B., Baglan N., Davis P.A. Current understanding of organically bound tritium (OBT) in the environment // J. of Environ. Radioact. 2013. V. 126. P. 83–91.
- Galeriu D., Melintescu A., Strack S. et al. An overview of organically bound tritium experiments in plants following a short atmospheric HTO exposure // J. of Environ. Radioact. 2013. V. 118. P. 40–56.
- Le Goff P., Fromm M., Vichot L. et al. Isotopic fractionation of tritium in biological systems // Environment International. 2014. V. 65. P. 116–126.
- Investigation of the environmental fate of tritium in the atmosphere. Part of the Tritium Studies Project. Ottawa: CNSC, 2009. 104 p.
- Guéguen Y., Priest N.D., Dublineau I. et al. In vivo animal studies help achieve international consensus on standards and guidelines for health risk estimates for chronic exposure to low levels of tritium in drinking water // Environ. and Molecular Mutagenesis. 2018. V. 59. № 7. P. 586–594.
- Standards and guidelines for tritium in drinking water (INFO-0766). Ottawa: CNSC, 2014.
- Кочетков О.А., Монастырская С.Г., Кабанов Д.И. Проблемы нормирования техногенного трития (обзор) // Саратовский научно-медицинский журнал. 2013. Т. 9. № 4. С. 815–818.
- Нормы радиационной безопасности (НРБ-99/2009): Санитарно-эпидемиологические правила и нормативы (СанПиН 2.6.1.2523-09). М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009. 100 с.
- Brooks A.L., Couch L.A., Chad S.A. Commentary: what is the health risk of 740 bq l−1 of tritium? a perspective // Health Physics. 2013. V. 104. № 1. P. 108–114.
- ICRP Publication 26: Recommendations of the International Commission on Radiological Protection / Ann. ICRP. 1977. V. 1. № 3. 88 p.
- ICRP Publication 60: Recommendations of the International Commission on Radiological Protection // Ann. ICRP. 1991. V. 21. № 1-3. 211 p.
- ICRP Publication 92: Relative biological effectiveness (RBE), quality factor (Q), and radiation weighting factor (WR) // Ann. ICRP. 2003. V. 33. № 4. 117 p.
- Transfer of tritium in the environment after accidental releases from nuclear facilities. Vienna: IAEA, 2014. 283 p.
- Howard B.J., Telleria D., Proehl G. Handbook of parameter values for the prediction of radionuclide transfer to wildlife. Vienna: IAEA, 2014. 228 p.
- Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical reports. Series № 472. Vienna: IAEA, 2010. 208 p.
- ICRP Publication 114: Environmental protection: transfer parameters for reference animals and plants // Ann. ICRP. 2009. V. 39. № 6. 115 p.
- Ewers L.W., Ham G.J., Wilkins B.T. Review of the transfer of naturally occurring radionuclides to terrestrial plants and domestic animals. Chilton: National Radiological Protection Board, 2003. 64 p.
- Mills W.B., Cheng J.J., Droppo Jr. J.G. et al. Multimedia benchmarking analysis for three risk assessment models: RESRAD, MMSOILS, and MEPAS // Risk Analysis. 1997. V. 17. № 2. P. 187–201.
- Yu C. Modeling radionuclide transport in the environment and assessing risks to humans, flora, and fauna: the RESRAD family of codes // Applied Modeling and Computations in Nuclear Science. American Chemical Society, 2006. P. 58–70.
- Beresford N., Brown J., Copplestone D. et al. D-ERICA: An integrated approach to the assessment and management of environmental risks from ionising radiation // European Commission under the Euratom Research, Nuclear Energy within the Sixth Framework Programme, 2007.
- Brown J.E., Alfonso B., Avila R. et al. The ERICA tool // J. Environ Radioact. 2008. V. 99. № 9. P. 1371−1383.
- Copplestone D., Hingston J., Real A. The development and purpose of the FREDERICA radiation effects database // J. of Environ. Radioact. 2008. V. 99. № 9. P. 1456–1463.
- Garnier-Laplace J., Copplestone D., Gilbin R. et al. Issues and practices in the use of effects data from FREDERICA in the ERICA integrated approach // J. of Environ. Radioact. 2008. V. 99. № 9. P. 1474–1483.
- Brown J.E., Alfonso B., Avila R. et al. A new version of the ERICA tool to facilitate impact assessments of radioactivity on wild plants and animals // J. of Environ. Radioact. 2016. V. 153. P. 141–148.
- Dallas L.J., Devos A., Fievet B. et al. Radiation dose estimation for marine mussels following exposure to tritium: Best practice for use of the ERICA tool in ecotoxicological studies // J. of Environ. Radioact. 2016. V. 155–156. P. 1–6.
- ICRP Publication 108: Environmental protection − the concept and use of reference animals and plants // Ann. ICRP. 2008. V. 38. № 4–6. 247 p.
- Ulanovsky A., Prohl G. Dosimetry for reference animals and plants: current state and prospects // Ann. ICRP. 2012. V. 41. № 3–4. P. 218–232.
- Antonova E.V., Pozolotina V.N. Investigation of biological-rhythm patterns: physiological and biochemical effects in herbaceous plants exposed to low-level chronic radiation. Part 1: Nonirradiated seeds // Int. J. of Rad. Biology. 2024. V. 100. № 7. P. 1051–1071.
- Higley K., Ruedig E., Gomez-Fernandez M. et al. Creation and application of voxelised dosimetric models, and a comparison with the current methodology as used for the International Commission on Radiological Protection’s reference animals and plants // Ann. ICRP. 2015. V. 44. № 1_suppl. P. 313–330.
- Charrasse B., Anderson A., Mora J.C. et al. Does the use of reference organisms in radiological impact assessments provide adequate protection of all the species within an environment? // Science of the Total Environ. 2019. V. 658. P. 189–198.
- Шевченко В.А. О перестройках хромосом, индуцированных 3Н-тимидином у Crepis capillaris // Генетика. 1971. T. 7. № 5. C. 15–22.
- Тимофеев-Ресовский Н.В. Некоторые проблемы радиационной биогеоценологии: Автореф. дис. ... докт. биол. наук. Свердловск, 1962. 46 c.
- Bradshaw C., Kapustka L., Barnthouse L. et al. Using an ecosystem approach to complement protection schemes based on organism-level endpoints // J. of Environ. Radioact. 2014. V. 136. P. 98–104.
- Horemans N., GiIbin R., Beresford N. Effects on ecosystems at Chernobyl and Fukushima: remaining controversies and future research challenges // Lecture in: 5th Intern. Conference on Radioecology & Environmental Radioactivity, Oslo, Norway, 4-9 September, 2022.
- Brechignac F., Doi M. Challenging the current strategy of radiological protection of the environment: arguments for an ecosystem approach // J. of Environ. Radioact. 2009. V. 100. № 12. P. 1125–1134.
- Bréchignac F. The need to integrate laboratory- and ecosystem-level research for assessment of the ecological impact of radiation // Integr. Environ. Assess. Manag. 2016. V. 12. № 4. P. 673–676.
- Bréchignac F., Oughton D., Mays C. et al. Addressing ecological effects of radiation on populations and ecosystems to improve protection of the environment against radiation: agreed statements from a consensus symposium // J. of Environ. Radioact. 2016. V. 158–159. Supplement C. P. 21–29.
- Garnier-Laplace J., Della-Vedova C., Andersson P. et al. A multi-criteria weight of evidence approach for deriving ecological benchmarks for radioactive substances // J. of Radiol. Protection. 2010. V. 30. № 2. P. 215–233.
- Ofotsu P.M., Katayama K. A mini review of organically bound tritium in the environment // Proc. of International Exchange and Innovation Conference on Engineering & Sciences (IEICES). 2022. V. 8. P. 330–334.
- Vold E.L. A brief review of environmental transport of tritium at the Los Alamos LLRW disposal facility. Report LA-UR-94-3685, 1994. 15 p.
- Nie B., Fang S., Jiang M. et al. Anthropogenic tritium: inventory, discharge, environ. behavior and health effects // Renewable and Sustainable Energy Reviews. 2021. V. 135. Art. 110188.
- Cline J. Absorption and metabolism of tritium oxide and tritium gas by bean plants // Plant Physiology. 1953. V. 28. № 4. P. 717–723.
- Strand J.A., Templeton W.L., Tangen E.G. Accumulation and retention of tritium (tritiated water) in embryonic and larval fish, and radiation effect // 3rd Int. Symp. of Radioecology. Oak Ridge: U.S. AEC, 1971. 23 p.
- Strack S., Kistner G. Biokinetic aspects of tissue-bound tritium in algae // Current Topics in Radiation Research Quarterly. 1978. V. 12. № 1–4. P. 133–141.
- Patrick P. Tritium uptake kinetics in crayfish (Orconectes immunis). Report No 85-133-K. Ontario, 1985. 31 p.
- Takeda H., Lu H.M., Miyamoto K. et al. Comparative biokinetics of tritium in rats during continuous ingestion of tritiated water and tritium-labeled food // Int. J. of Radiation Biology. 2001. V. 77. № 3. P. 375–381.
- Hill R.L., Johnson J.R. Metabolism and dosimetry of tritium // Health Physics. 1993. V. 65. № 6. P. 628–647.
- Priest N.D., Blimkie M.S.J., Wyatt H. et al. Tritium (3H) retention in mice: administered as HTO, DTO or as 3H-labeled amino-acids // Health Physics. 2017. V. 112. № 5. P. 439–444.
- Richardson R., Dunford D. A biochemical-based model for the dosimetry of dietary organically bound tritium – part 2: dosimetric evaluation // Health Physics. 2003. V. 85. № 5. P. 539–552.
- Richardson R.B., Dunford D.W. Review of the ICRP tritium and 14C internal dosimetry models and their implementation in the Genmod-PC code // Health Physics. 2001. V. 81. № 3. P. 289–301.
- Whillians D.W. Structure of a physiologically based biokinetic model for use in 14C and organically bound tritium dosimetry // Radiation Protection Dosimetry. 2003. V. 105. № 1–4. P. 189–192.
- Cox R., Menzel H.-G., Preston J. Internal dosimetry and tritium – the ICRP position // J. of Radiol. Protection. 2008. V. 28. № 2. P. 131.
- Harrison J. Doses and risks from tritiated water and environmental organically bound tritium // J. of Radiol. Protection. 2009. V. 29. № 3. P. 335–349.
- Silini G., Metalli P., Vulpis G. Radiotoxicity of tritium in mammals. Luxembourg: Commission of the European Communities, 1971. 36 p.
- Семенов А.А., Заикин С.П., Филимонова Н.В. и др. Разработка составов цементобетонных смесей с использованием суперпластификаторов класса поликарбоксилатов для иммобилизации трития // Вопросы атомной науки и техники. Серия: Материаловедение и новые материалы. 2017. T. 4. № 91. C. 95–122.
- Sun J., Lucas M.C., Madigan D.J. Complex fish migrations call for Fukushima radioactivity monitoring beyond marine systems // BioScience. 2024. V. 74. № 4. P. 230–231.
- Falagas M.E., Pitsouni E.I., Malietzis G.A. et al. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses // The FASEB J. 2008. V. 22. № 2. P. 338–342.
- Turland N.J., Wiersema J.H., Barrie F.R. et al. International code of nomenclature for algae, fungi, and plants (Shenzhen code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017: Koeltz botanical books, 2018.
- Lajtha L.G., Oliver R. The application of autoradiography in the study of nucleic acid metabolism // Laboratory Investigation. 1959. V. 8. № 1. P. 214–222.
- Yurkewicz L., Lauder J.M., Marchi M. et al. 3H-thymidine long survival autoradiography as a method for dating the time of neuronal origin in the chick embryo: The locus coeruleus and cerebellar Purkinje cells // J. of Comparative Neurology. 1981. V. 203. № 2. P. 257–267.
- Ermak T.H. Renewal of the gonads in Styela clava (Urochordata: Ascidiacea) as revealed by autoradiography with tritiated thymidine // Tissue and Cell. 1976. V. 8. № 3. P. 471–478.
- Taylor J.H., Woods P.S., Hughes W.L. The organization and duplication of chromosomes as revealed by autoradiographic studies using tritium-labeled thymidinee // Proc. Nat. Acad. Sci. 1957. V. 43. № 1. P. 122–128.
- Wimber D.E. Chromosome breakage produced by tritium-labeled thymidine in Tradescantia paludosa // Proc. Nat. Acad. Sci. 1959. V. 45. № 6. P. 839–846.
- Robertson J.S., Hughes W.L. Intranuclear irradiation with tritium-labeled thymidine // Proc. of the First National Biophysics Conference / Eds. Quastler H., Morowitz H. J. New Haven: Yale University Press, 1959. P. 278–283.
- Cronkite E.P., Fliedner T.M., Killmann S.A. et al. Tritium-labelled thymidine (H3TDR): its somatic toxicity and use in the study of growth rates and potentials in normal and malignant tissue of man and animals // Symp. on the Detection and Use of Tritium in the Physical and Biological Sciences. Vienna: IAEA, 1962. P. 189–209.
- Hine G.J., Brownell G.L. Radiation dosimetry. N.Y.: Academic Press, 1956. 932 p.
- Synzynys B.I., Momot O.A., Mirzeabasov O.A. et al. Radiological problems of tritium // KnE Engineering. 2018. V. 3. № 3. P. 249–260.
- Komatsu K., Higuchi M., Sakka M. Accumulation of tritium in aquatic organisms through a food chain with three trophic levels // J. of Radiation Research. 1981. V. 22. № 2. P. 226–241.
- Dobson R.L., Kwan T.C. The RBE of tritium radiation measured in mouse oocytes: increase at low exposure levels // Radiation Research. 1976. V. 66. № 3. P. 615–625.
- Dobson R.L., Cooper M.F. Tritium toxicity: effect of low-level 3HOH exposure on developing female germ cells in the mouse // Radiation Research. 1974. V. 58. № 1. P. 91–100.
- Wood T.H., Rosenberg A.M. Freezing in yeast cells // Biochimica et Biophysica Acta. 1957. V. 25. P. 78–87.
- Yamaguchi T., Muraiso C., Furuno-Fukushi I. et al. Water content in cultured mammalian cells for dosimetry of beta-rays from tritiated water // J. of Radiation Research. 1990. V. 31. № 4. P. 333–339.
- Беловодский Л.Ф., Гаевой В.К., Гришмановский В.И. Тритий. М.: Энергоатомиздат, 1985. 248 с.
- Королев В.Г., Иванов Е.Л., Грачева Л.М. Изучение молекулярной природы мутаций в гене ade2 у дрожжей Saccharomyces cerevisiae. Сообщ. I. Общая схема и анализ неполярно комплементирующих мутаций // Генетика. 1980. Т. 16. № 2. С. 230–238.
- Adam-Guillermin C., Pereira S., Della-Vedova C. et al. Genotoxic and reprotoxic effects of tritium and external gamma irradiation on aquatic animals // Rev. Environ. Contam. Toxicology / Ed. Whitacre D.M. N.Y.: Springer, 2012. P. 67–103.
- Ichikawa R., Suyama I. Effects of tritiated water on the embryonic development of two marine teleosts // Bul. of the Jap. Soc. of Sci Fish. 1974. V. 40. № 8. P. 819–824.
- Hagger J.A., Atienzar F.A., Jha A.N. Genotoxic, cytotoxic, developmental and survival effects of tritiated water in the early life stages of the marine mollusc, Mytilus edulis // Aquatic Toxicology. 2005. V. 74. № 3. P. 205–217.
- Jaeschke B.C., Millward G.E., Moody A.J. et al. Tissue-specific incorporation and genotoxicity of different forms of tritium in the marine mussel, Mytilus edulis // Environ. Pollution. 2011. V. 159. № 1. P. 274–280.
- Jha A.N., Dogra Y., Turner A. et al. Impact of low doses of tritium on the marine mussel, Mytilus edulis: Genotoxic effects and tissue-specific bioconcentration // Mutation Research/Genetic Toxicology and Environ. Mutagenesis. 2005. V. 586. № 1. P. 47–57.
- Jha A.N., Dogra Y., Turner A. et al. Are low doses of tritium genotoxic to Mytilus edulis? // Marine Environ. Research. 2006. V. 62. P. S297–S300.
- Etoh H., Hyodo-Taguchi Y. Effects of tritiated water on germ cells in medaka embryos // Radiation Research. 1983. V. 93. № 2. P. 332–339.
- Hyodo-Taguchi Y., Etoh H. Effects of tritiated water on the testicular stem cells in medaka. I. Diminished reproductive capacity at 2 months following exposure [Oryzias latipes]. Chiba: Nat. Inst. Radiol. Sciences, 1986. P. 35–36.
- Hyodo-Taguchi Y., Etoh H. Vertebral malformations in medaka (teleost fish) after exposure to tritiated water in the embryonic stage // Radiation Research. 1993. V. 135. № 3. P. 400–404.
- Ueno A.M. Incorporation of tritium from tritiated water into nucleic acids of Oryzias latipes eggs // Radiation Research. 1974. V. 59. № 3. P. 629–637.
- Hyodo-Taguchi Y., Egami N. Damage to spermatogenic cells in fish kept in tritiated water // Radiation Research. 1977. V. 71. № 3. P. 641–652.
- Selivanova M.A., Mogilnaya O.A., Badun G.A. et al. Effect of tritium on luminous marine bacteria and enzyme reactions // J. of Environ. Radioact. 2013. V. 120. P. 19–25.
- Ijiri K. Cell death (apoptosis) in mouse intestine after continuous irradiation with γ-rays and with β-rays from tritiated water // Radiation Research. 1989. V. 118. № 1. P. 180–191.
- Русинова Г.Г., Мушкачева Г.С., Турдакова В.А. и др. Сравнение биологического действия окиси трития и гамма-облучения по изменению массы вилочковой железы крыс // Радиобиология. 1989. T. 29. № 6. C. 798–803.
- Carsten A.L., Commerford S.L., Cronkite E.P. The genetic and late somatic effects of chronic tritium ingestion in mice // Current Topics in Radiation Research Quarterly. 1978. V. 12. № 1–4. P. 212–224.
- Carsten A.L., Cronkite E.P. Comparison of late effects of single x-ray exposure, chronic tritiated water ingestion, and chronic 137Cs gamma exposure in mice // Int. Symp. on Biological Implications of Radionuclides Released from Nuclear Industries. Vienna: IAEA, 1979. P. 1–12.
- Takeda H., Kasida Y. Biological behavior of tritium after administration of tritiated water in the rat // J. of Radiation Research. 1979. V. 20. № 2. P. 174–185.
- ICRP Publication 10: Evaluation of radiation doses to body tissues: from internal contamination due to occupational exposure. Oxford: Pergamon Press, 1968. 26 p.
- Cahill D.F., Yuile C.L. Tritium: some effects of continuous exposure in utero on mammalian development // Radiation Research. 1970. V. 44. № 3. P. 727–737.
- Umata T., Kunugita N., Norimura T. A comparison of the mutagenic and apoptotic effects of tritiated water and acute or chronic 137Cs gamma exposure on spleen T-lymphocytes on normal and p53-deficient mice // Int. J. of Radiation Biology. 2009. V. 85. № 12. P. 1082–1088.
- Obodovskiy I. Fundamentals of radiation and chemical safety. Amsterdam: Elsevier, 2015. 250 p.
- Rossi H.H. The role of microdosimetry in radiobiology // Radiation and Environ. Biophysics. 1979. V. 17. № 1. P. 29–40.
- Иванов В.И., Лысцов В.Н., Губин А.Т. Справочное руководство по микродозиметрии. М.: Энергоатомиздат, 1986. 184 с.
- Berger M.J. Beta-ray dose in tissue-equivalent material immersed in a radioactive cloud // Health Physics. 1974. V. 26. № 1. P. 1–12.
- Bannister L., Serran M., Bertrand L. et al. Environmentally relevant chronic low-dose tritium and gamma exposures do not increase somatic intrachromosomal recombination in pKZ1 mouse spleen // Radiation Research. 2016. V. 186. № 6. P. 539–548.
- Alloni D., Cutaia C., Mariotti L. et al. Modeling dose deposition and DNA damage due to low-energy β-emitters // Radiation Research. 2014. V. 182. № 3. P. 322–330.
- Роднева С.М., Гурьев Д.В. Дозиметрия трития на клеточном уровне // Медицинская радиология и радиационная безопасность. 2023. T. 68. № 1. C. 92–100.
- Vaziri B., Wu H., Dhawan A.P. et al. MIRD pamphlet No. 25: MIRDcell v.2.0 software tool for dosimetric analysis of biologic response of multicellular populations // J. of Nuclear Medicine. 2014. V. 55. № 9. P. 1557–1564.
- Сазыкина Т.Г., Крышев А.И. Модель расчета поглощения энергии от инкорпорированных излучателей моноэнергетических электронов в объектах природной биоты // Радиация и риск. 2021. Т. 30. № 2. С. 113–122.
- Siragusa M., Fredericia P.M., Jensen M. et al. Radiobiological effects of tritiated water short-term exposure on V79 clonogenic cell survival // Int. J. of Radiation Biology. 2018. V. 94. № 2. P. 157–165.
- Siragusa M., Baiocco G., Fredericia P.M. et al. The COOLER code: a novel analytical approach to calculate subcellular energy deposition by internal electron emitters // Radiation Research. 2017. V. 188. № 2. P. 204–220.
- Melintescu A. Radiological impact assessment of acute tritium releases in environment – a soil dynamic model // Fusion Science and Technology. 2024. V. 80. № 3–4. P. 266–275.
- Galeriu D., Melintescu A., Lazar C. Development of CROPTRIT model: the dynamics of tritium in agricultural crops // Intern. Conf. on Radioec. and Environ. Radioact. Barcelona, Spain, 2014. OP-043.
- Beaugelin-Seiller K., Jasserand F., Garnier-Laplace J. et al. Modeling radiological dose in non-human species: principles, computerization, and application // Health Physics. 2006. V. 90. № 5. P. 485–493.
- Gagnaire B., Adam-Guillermin C., Festarini A. et al. Effects of in situ exposure to tritiated natural environments: a multi-biomarker approach using the fathead minnow, Pimephales promelas // Science of the Total Environ. 2017. V. 599–600. P. 597–611.
- Beaugelin-Seiller K., Jasserand F., Garnier-Laplace J. et al. EDEN: software to calculate the dose rate of energy for the non-human biota, due to the presence of radionuclides in the environment // WIT Transactions on Ecology and the Environment. 2004. V. 69. 10 p.
- Réty C., Gilbin R., Gomez E. Induction of reactive oxygen species and algal growth inhibition by tritiated water with or without copper // Environ. Toxicology. 2012. V. 27. № 3. P. 155–165.
- Galeriu D., Turcanu C., Melintescu A. User guide for the tritium food chain and dose module FDMH of RODOS-PV4.0F_02. Bucharest: National Institute for Nuclear Physics and Engineering, 2001. 43 p.
- Rahman Z., Rehman S.U., Mirza S.M. et al. Geant4-based comprehensive study of the absorbed fraction for electrons and gamma-photons using various geometrical models and biological tissues // Nuclear Technology and Radiation Protection. 2013. V. 28. № 4. P. 341–351.
- Richardson R., Dunford D. A biochemical-based model for the dosimetry of dietary organically bound tritium – part 1: physiological criteria // Health Physics. 2003. V. 85. № 5. P. 523–538.
- Peterson S.-R., Davis P.A. Tritium doses from chronic atmospheric releases: a new approach proposed for regulatory compliance // Health Physics. 2002. V. 82. № 2. P. 213–225.
- Chao T.-C., Wang C.-C., Li J. et al. Cellular- and micro-dosimetry of heterogeneously distributed tritium // Int. J. of Radiation Biology. 2012. V. 88. № 1–2. P. 151–157.
- Chen J. Radiation quality of tritium // Radiation Protection Dosimetry. 2006. V. 122. № 1–4. P. 546–548.
- Chen J. Estimated yield of double-strand breaks from internal exposure to tritium // Radiation and Environ. Biophysics. 2012. V. 51. № 3. P. 295–302.
- Rabus H., Nettelbeck H. Nanodosimetry: bridging the gap to radiation biophysics // Radiation Measurements. 2011. V. 46. № 12. P. 1522–1528.
- Тимофеев Л.В., Максимов А.А., Кочетков О.А. и др. К вопросу о дозе трития на клеточном уровне // Медицинская радиология и радиационная безопасность. 2020. T. 65. № 6. C. 66–72.
- Mao L., Miao Y., Dong S. et al. Algae induced tritium organification promotes human exposure risk // Research Square. 2023. Preprint. 33 p.
- Hirao S., Kakiuchi H., Akata N. et al. Assessing the variability of tissue-free water tritium and non-exchangeable organically bound tritium in pine needles in Fukushima using atmospheric titrated water vapor // Science of the Total Environ. 2024. V. 907. Art. 168173.
- Ota M., Kwamena N.-O.A., Mihok S. et al. Role of soil-to-leaf tritium transfer in controlling leaf tritium dynamics: comparison of experimental garden and tritium-transfer model results // J. of Environ. Radioact. 2017. V. 178–179. P. 212–231.
- Galeriu D., Davis P., Raskob W. et al. Recent progresses in tritium radioecology and dosimetry – today and tomorrow // Fusion Science and Technology. 2008. V. 54. № 1. P. 237–242.
- Korolevych V.Y., Kim S.B., Davis P.A. OBT/HTO ratio in agricultural produce subject to routine atmospheric releases of tritium // J. of Environ. Radioact. 2014. V. 129. P. 157–168.
- Ulanovsky A., Pröhl G. Tables of dose conversion coefficients for estimating internal and external radiation exposures to terrestrial and aquatic biota // Radiation and Environ. Biophysics. 2008. V. 47. № 2. P. 195–203.
- Diabate S., Strack S. Organically bound tritium // Health Physics. 1993. V. 65. № 6. P. 698–712.
- Калязина Н.С., Журавлев В.Ф., Москалев Ю.И. Кинетика обмена в организме тимидина, меченного тритием // Гигиена и санитария. 1980. № 12. C. 40–43.
- Gagnaire B., Arcanjo C., Cavalié I. et al. Tritiated water exposure in zebrafish (Danio rerio): effects on the early-life stages // Environ. Toxicology and Chemistry. 2020. V. 39. № 3. P. 648–658.
- Arcanjo C., Armant O., Floriani M. et al. Tritiated water exposure disrupts myofibril structure and induces mis-regulation of eye opacity and DNA repair genes in zebrafish early life stages // Aquatic Toxicology. 2018. V. 200. P. 114−126.
- Beaton E., Gosselin I., Festarini A. et al. Correlated responses for DNA damage, phagocytosis activity and lysosomal function revealed in a comparison between field and laboratory studies: fathead minnow exposed to tritium // Science of the Total Environ. 2019. V. 662. P. 990–1002.
- Arcanjo C., Maro D., Camilleri V. et al. Assessing tritium internalisation in zebrafish early life stages: importance of rapid isotopic exchange // J. of Environ. Radioact. 2019. V. 203. P. 30–38.
- Arcanjo C., Maro D., Camilleri V. et al. Errata: Assessing tritium internalisation in zebrafish early life stages: importance of rapid isotopic exchange // J. of Environ. Radioact. 2022. V. 242. Art. 106757.
- Hunt J., Bailey T., Reese A. The human body retention time of environmental organically bound tritium // J. of Radiol. Protection. 2009. V. 29. № 1. P. 23–36.
- Strand J.A., Fujihara M., Burdett R. et al. Suppression of the primary immune response in rainbow trout, Salmo gairdneri, sublethally exposed to tritiated water during embryogenesis // J. of the Fish. Board of Canada. 1977. V. 34. № 9. P. 1293–1304.
- Kim S.B., Rowan D., Chen J. et al. Tritium in fish from remote lakes in northwestern Ontario, Canada // J. of Environ. Radioact. 2018. V. 195. P. 104–108.
- Pearson H.B.C., Dallas L.J., Comber S.D.W. et al. Mixtures of tritiated water, zinc and dissolved organic carbon: assessing interactive bioaccumulation and genotoxic effects in marine mussels, Mytilus galloprovincialis // J. of Environ. Radioact. 2018. V. 187. P. 133–143.
- Dallas L.J., Bean T.P., Turner A. et al. Exposure to tritiated water at an elevated temperature: Genotoxic and transcriptomic effects in marine mussels (M. galloprovincialis) // J. of Environ. Radioact. 2016. V. 164. P. 325–336.
- Nushtaeva V.E., Spiridonov S.I., Mikailova R.A. et al. Radiation dose assessment for representative biota organisms in the locale of NPP with VVER-1200 // Atomic Energy. 2020. V. 128. № 4. P. 251–258.
- Inomata T., Higuchi M. Accumulation and retention of tritium (tritiated water) in Rhodopseudomonas spheroides under aerobic condition // Radiation and Environ. Biophysics. 1982. V. 20. № 2. P. 123–136.
- Satoh Y., Imada S., Tani T. et al. Investigation of ratio of carbon to hydrogen (C/H ratio) in agricultural plants for further estimation of their productivity of organically bound tritium // J. of Environ. Radioact. 2022. V. 246. Art. 106845.
- Kirchmann R., Gerber G.B., Fagniart E. et al. Accidental release of elemental tritium gas and tritium oxide: models and in situ experiments on various plant species // Radiation Protection Dosimetry. 1986. V. 16. № 1–2. P. 107–110.
- Tani T., Nagai M. Retention of organically bound deuterium in grass plants exposed to heavy water vapour at different growth stages // Radiation Protection Dosimetry. 2022. V. 198. № 13–15. P. 886–890.
- DeVol T.A., Powell B.A. Theoretical organically bound tritium dose estimates // Health Physics. 2004. V. 86. № 2. P. 183–186.
- Strack S., Kistner G., Emeis C. Incorporation of tritium into planktonic algae in a continuous culture under dynamic conditions // Int. Sym. on the Behaviour of Tritium in the Environment. San Francisco, 16–20 Oct. 1978. Vienna: IAEA, 1979. 219–230 p.
- König L.A. Tritium in the food chain // Radiation Protection Dosimetry. 1990. V. 30. № 2. P. 77–86.
- Smith R., Ellender M., Guo C. et al. Biokinetics and internal dosimetry of tritiated steel particles // Toxics. 2022. V. 10. № 10. Art. 602.
- Barrett P.H.R., Bell B.M., Cobelli C. et al. SAAM II: simulation, analysis, and modeling software for tracer and pharmacokinetic studies // Metabolism. 1998. V. 47. № 4. P. 484–492.
- ICRP Publication 30: Limits for intakes of radionuclides by workers. Part 1 // Ann. ICRP. 1979. V. 2. № 3–4. 133 p.
- ICRP Publication 30: Limits for intakes of radionuclides by workers. Part 2 // Ann. ICRP. 1980. V. 4. № 3–4. 89 p.
- ICRP Publication 30: Limits for intakes of radionuclides by workers. Part 3 // Ann. ICRP. 1981. V. 6. № 3–4. 134 p.
- ICRP Publication 68: Dose coefficients for intakes of radionuclides by workers // Ann. ICRP. 1994. V. 24. № 4. 124 p.
- ICRP Publication 88: Doses to the embryo and fetus from intakes of radionuclides by the mother // Ann. ICRP. 2001. V. 31. № 1–3. 522 p.
- Tani T., Ishikawa Y. A deuterium tracer experiment for simulating accumulation and elimination of organically bound tritium in an edible flatfish, olive flounder // Science of the Total Environ. 2023. V. 903. Art. 166792.
- Galeriu D., A. Beresford N., Takeda H. et al. Towards a model for the dynamic transfer of tritium and carbon in mammals // Radiation Protection Dosimetry. 2003. V. 105. № 1–4. P. 387–390.
- Greiff D. The effect of beta rays (tritium) on the growth of rickettsiae and influenza virus // Proc. of the Symp. on the Detection and Use of Tritium in the Physical and Biological Sciences. V. II. Tritium in the Physical and Biological Sciences. Vienna: IAEA, 1962. P. 155–164.
- Lai J.-l., Li Z.-g., Han M.-w. et al. Analysis of environmental biological effects and OBT accumulation potential of microalgae in freshwater systems exposed to tritium pollution // Water Research. 2024. V. 250. Art. 121013.
- Ichimasa M., Ichimasa Y., Yagi Y. et al. Oxidation of atmospheric molecular tritium in plant leaves, lichens and mosses // J. of Radiation Research. 1989. V. 30. № 4. P. 323–329.
- Ichimasa M., Suzuki M., Obayashi H. et al. In vitro determination of oxidation of atmospheric tritium gas in vegetation and soil in Ibaraki and Gifu, Japan // J. of Radiation Research. 1999. V. 40. № 3. P. 243–251.
- Shibata T., Ishikawa Y. Deuterium transfer analysis including food chain from seawater into abalone // Radiation Protection Dosimetry. 2022. V. 198. № 13–15. P. 1125–1130.
- Atarashi-Andoh M., Amano H., Kakiuchi H. et al. Formation and retention of organically bound deuterium in rice in deuterium water release experiment // Health Physics. 2002. V. 82. № 6. P. 863–868.
- Ichimasa M., Weng C., Ara T. et al. Organically bound deuterium in rice and soybean after exposure to heavy water vapor as a substitute for tritiated water // Fusion Science and Technology. 2002. V. 41. № 3P2. P. 393–398.
- Takashima Y., Momoshima N., Inoue M. et al. Tritium in pine needles and its significant sources in the environment // Int. J. of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes. 1987. V. 38. № 4. P. 255–261.
- Momoshima N., Kakiuchi H., Okai T. et al. Tritium in a pine forest ecosystem: relation between fresh pine needles, organic materials on a forest floor and atmosphere // J. of Radioanal. and Nucl. Chem. 2000. V. 243. № 2. P. 479–482.
- Hisamatsu S.I., Katsumata T.I., Takizawa Y. Tritium concentrations in pine needle, litter and soil samples // J. of Radiation Research. 1998. V. 39. № 2. P. 129–136.
- Pettitt E.A., Duff M.C., VerMeulen H. Influence of irrigation approaches and spatial geolocation on tritium speciation, uptake and depuration // Chemosphere. 2024. V. 349. Art. 140921.
- Lattaud C., Marcel R. Stimulating influence of cerebral ganglia on in vitro incorporation of tritiated leucine into ovaries of Eisenia fetida Sav. (Annelida: Oligochaeta) // Zoological Science. 1989. V. 6. № 4. P. 741–748.
- Marsden J.R., Coleman C., Richard R. et al. Uptake of tritium-labelled biogenic amines by the prostomium of the polychaete Nereis virens (SARS) (Annelida) // Tissue and Cell. 1981. V. 13. № 2. P. 269–282.
- Easdown J., Marsden J., Paradis K. et al. A preliminary account of brain growth in postlarval Nereis virens (Polychaeta: Annelida): a [3H]-thymidine study // Canadian J. of Zoology. 1980. V. 58. № 11. P. 2141–2149.
- Гудков Д.И. Тритий в пресных водах Украины и его действие на гидробионтов: Автореф. дис. … канд. биол. наук. Киев, 1995. 24 c.
- Blaylock B. The production of chromosome aberration in Chironomus riparius (Diptera: Chironomidae) by tritiated water // The Canadian Entomologist. 1971. V. 103. № 3. P. 448–453.
- Kaplan W., Gugler H., Kidd K. et al. Nonrandom distribution of lethals induced by tritiated thymidine in Drosophila melanogaster // Genetics. 1964. V. 49. № 4. P. 701–714.
- Audette-Stuart M., Kim S.-B., McMullin D. et al. Measuring adaptive responses following chronic and low dose exposure in amphibians // Biomarkers of Radiation in the Environment / Eds. Wood M.D., Mothersill C.E., Tsakanova G. et al. Dordrecht: Springer, 2022. P. 205–221.
- Audette-Stuart M., Ferreri C., Festarini A. et al. Fatty acid composition of muscle tissue measured in amphibians living in radiologically contaminated and non-contaminated environments // Radiation Research. 2012. V. 178. № 3. P. 173–181.
- Audette-Stuart M., Yankovich T. Bystander effects in bullfrog tadpoles // Radioprotection. 2011. V. 46. № 6. P. S497–S502.
- Audette-Stuart M., Kim S.B., McMullin D. et al. Adaptive response in frogs chronically exposed to low doses of ionizing radiation in the environment // J. of Environ. Radioact. 2011. V. 102. № 6. P. 566–573.
- Sauer M.E., Walker B.E. Radiation injury resulting from nuclear labeling with tritiated thymidine in the chick embryo // Radiation Research. 1961. V. 14. № 5. P. 633–642.
Дополнительные файлы
