Structure and magnetic properties of the medium-entropy GdTbDyY alloy

Capa

Citar

Texto integral

Resumo

A multicomponent rare-earth alloy GdTbDyY with a single-phase HCP crystal structure was synthesized. It was found that this alloy exhibits two magnetic phase transitions at temperatures of 140 and 201 K. Within the temperature range that encompasses both transitions, there was a noticeable magnetocaloric effect. It has been established that trivalent terbium and dysprosium ions contribute significantly to the magnetic properties of the GdTbDyY alloy: there is a correlation between structural and magnetic parameters.

Sobre autores

N. Pankratov

Lomonosov Moscow State University, Faculty of Physics

Email: pankratov@phys.msu.ru
Faculty of Physics Moscow, Russia

I. Tereshina

Lomonosov Moscow State University, Faculty of Physics

Moscow, Russia

P. Krot

Lomonosov Moscow State University, Faculty of Chemistry

Moscow, Russia

V. Verhetskiy

Lomonosov Moscow State University, Faculty of Chemistry

Moscow, Russia

S. Nikitin

Lomonosov Moscow State University, Faculty of Physics

Moscow, Russia

Bibliografia

  1. Brück E. // J. Physics D. Appl. Phys. 2005. V. 38. No. 23. P. R381.
  2. Maiorino A., Petruzzello F., Grilletto A. et al. // Appl. Energy. 2024. V. 364. P. 123145.
  3. Alahmer A., Al-Amoyneh M., Mostafa A.O. et al. // Energies. 2021. V. 14. No. 15. P. 4662.
  4. Khovaylo V.V., Taskaev S.V. // In: Encyclopedia of Smart Materials. Oxford: Elsevier, 2022. P. 407.
  5. Kitanovski A. // Adv. Energy Mater. 2020. V. 10. No. 10. Art. No. 1903741.
  6. Peng L., Dongsheng Y., Chao D. et al. // NPG Asia Mater. 2023. V. 15. No. 1. P. 41.
  7. Vidovichev S.N., Polushkin N.I., Rodionov I.D. et al. // Phys. Rev. B. 2018. V. 98. Art. No. 014428.
  8. Bez H.N., Pathak A.K., Biswas A. // Acta Mater. 2019. V. 173 P. 225.
  9. Tepeuunia H.C., Oeuvencea IO.A., Подпольская Г.А., Панкратов Н.Ю. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. C. 353; Tereshina I.S., Ovchenkova I.A., Politova G.A., Pankratov N.Yu. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 304.
  10. Franco V., Blazquez J.S., Ipus J.J. et al. // Progr. Mater. Sci. 2018. V. 93. P. 112.
  11. Pecharsky V.K., Gschneidner Jr. K.A. // Phys. Rev. Lett. 1997. V. 78. P. 4494.
  12. Fujieda S., Fujita A., Fukamichi K. // Appl. Phys. Lett. 2002. V. 81. No. 7. P. 1276.
  13. Tegus O., Brück E., Buschow K.H.J. et al. // Nature. 2002. V. 415. No. 6868. P. 150.
  14. Annarotzov M.P., Unal M., Nikitin S.A. et al. // J. Magn. Magn. Mater. 2002. V. 251. No. 1. P. 61.
  15. Maulupoe A.B., Kazantseva A.I., Kyasenko A.I. // Фр. // Изв. РАН. Сер. физ. 2021. Т. 85. № 7. C. 974; Mashirov A.V., Kamantsev A.P., Kuznetsov D.D. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 7. P. 751.
  16. Умкаев З.С., Tepeuunia H.C., Панкратов Н.Ю. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. C. 338; Umkhaeva Z.S., Tereshina I.S., Pankratov N.Yu. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 291.
  17. Пашуев А.М., Бондарьев А.В., Батаронов Н.Л. // Изв. РАН. Сер. физ. 2022. Т. 86. № 5. C. 682; Pushkova I.M., Bondareva I.V., Bataronov I.L. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 5. P. 569.
  18. Mukuyentosan A.A., Желений M.B., Панкратов Н.Ю. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 4. C. 485; Makurenkov A.A., Zhelezny M.V., Pankratov N.Yu. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 4. P. 420.
  19. Лилеева А.С. // Изв. РАН. Сер. физ. 2022. Т. 86. № 5. C. 697; Lileev A.S. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 5. P. 584.
  20. Умкаев З.С., Каренков А.Ю., Терешнян И.С. и др. // Изв. РАН. Сер. физ. 2022. Т. 88. № 5. C. 812; Umkhaeva Z.S., Karpenkov A.Yu., Tereshina I.S. et al. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. No. 5. P. 779.
  21. Luznik J., Kozelj P., Vrtnik S. et al. // Phys. Rev. B. 2015. V. 92. Art. No. 224201.
  22. Vrtnik S., Lunik J., Kozelj P. et al. // J. Alloys Compounds. 2018. V. 742. P. 877.
  23. Lu S.F., Ma L., Rao G.H. et al. // J. Mater. Sci. Mater. Electron. 2021. V. 32. No. 8. P. 10919.
  24. Yuan Y., Wu Y., Tong X. et al. // Acta Mater. 2017. V. 125. P. 481.
  25. Krueh M., Vrtnik S., Jelen A. et al. // Intermetallics. 2020. V. 117. Art. No. 106680.
  26. Vrtnik S., Lunik J., Kozelj P. et al. // Intermetallics. 2019. V. 105. P. 163.
  27. Yan L.J., Franco V. // Appl. Mater. 2021. V. 9. No. 8. Art. No. 080702.
  28. Wang L., Lu Z., Wu Y. et al. // Adv. Eng. Mater. 2023. V. 26. Art. No. 2300616.
  29. Lu S.F., Ma L., Wang J. et al. // J. Alloys Compounds. 2021. V. 874. Art. No. 159918.
  30. Wang L., Lu Z., Gao H. et al. // J. Alloys Compounds. 2023. V. 960. Art. No. 170901.
  31. Uporov S.A., Estemirova S. Kn., Sterkhov E.V. et al. // Intermetallics. 2022. V. 151. Art. No. 107678.
  32. Никитин С.А. Магнитные свойства редкоземельных металлов и их сплавов. М.: Изд-во МГУ, 1989. 247 с.
  33. Панкратов Н.Ю., Tepeuunia H.C., Никитин С.А. // ФММ. 2023. Т. 124. № 11. C. 1093; Pankratov N.Yu., Tereshina I.S., Nikitin S.A. // Phys. Met. Metallogr. 2023. V. 124. No. 11. P. 1139.
  34. Панкратов Н.Ю., Запов А.Н., Каренков Д.Ю. и др. // Изв. РАН. Сер. физ. 2013. Т. 77. № 10. C. 1472; Pankratov N.Yu., Zvonov A.I., Karpenkov D.Yu. et al. // Bull. Russ. Acad. Sci. Phys. 2013. V. 77. No. 10. P. 1268.
  35. Zvonov A.I., Pankratov N.Yu., Smarzhevskaya A.I. et al. // Phys. Stat. Sol. C. 2014. V. 11. No. 5-6. P. 1149.
  36. Головин Ю.Н., Головин Д.Ю. // Изв. РАН. Сер. физ. 2021. Т. 85. № 7. C. 927; Golovin Yu.I., Golovin D.Yu. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 7. P. 709.
  37. Menyuenkoa B.T., Munkoaa H.O., Дорофиевич H.B. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 7. С. 1049; Menushenkov V.P., Minkova I.O., Dorofievich I.V. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 7. P. 871.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025