ОПТИЧЕСКИЕ СВОЙСТВА МАГНИТОПЛАЗМОННЫХ МИКРОДИСКОВ

Обложка

Цитировать

Полный текст

Аннотация

Изучены электрическая поляризуемость, спектры оптической плотности и фототермические свойства слоевых микродисков Au/Fe/Au и Fe/Au/Fe, синтезированных методом отрывной оптической литографии. Предложен аналитический метод определения электрической поляризуемости в квазистатическом приближении. Теоретические и экспериментальные результаты согласуются в видимой и ближней ИК области спектра. Полученные результаты дают оценку применимости подобных микродисков для комбинированной фототермической и магнитомеханической противораковой терапии.

Об авторах

А. А Аникин

Федеральное государственное автономное образовательное учреждение высшего образования «Балтийский федеральный университет имени Иммануила Канта»

Email: anikinamon93@gmail.com
Калининград, Россия

А. В Моторжина

Федеральное государственное автономное образовательное учреждение высшего образования «Балтийский федеральный университет имени Иммануила Канта»

Калининград, Россия

В. К Беляев

Федеральное государственное автономное образовательное учреждение высшего образования «Балтийский федеральный университет имени Иммануила Канта»

Калининград, Россия

В. В Родионова

Федеральное государственное автономное образовательное учреждение высшего образования «Балтийский федеральный университет имени Иммануила Канта»

Калининград, Россия

Л. В Панина

Федеральное государственное автономное образовательное учреждение высшего образования «Балтийский федеральный университет имени Иммануила Канта»; Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский технологический университет «МИСИС»

Калининград, Россия; Москва, Россия

Список литературы

  1. Кабтош I., Savadogo O. // Progr. Biomater. 2016. V. 5 P. 147.
  2. Oliveira H., Pérez-Andrés E., Thevenot J. et al. // J. Control. Release. 2013. V. 169. P. 165.
  3. Naud C., Thébault C., Carrière M. et al. // Nanoscale Adv. 2020. V. 2. P. 3632.
  4. Головин Ю.И., Жисачев А.О., Казань Н.Л., Кабанов А.В. // Изв. РАН. Сер. физ. 2018. Т. 82. № 9. С. 1182; Golovin Y.I., Zhigachev A.O., Kiyachko N.L. et al. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. No. 9. P. 1073.
  5. Kim D.H., Rozhkova E.A., Ulasov I.V. et al. // Nature Mater. 2009. V. 9. P. 165.
  6. Novosad V., Rozhkova E.A. // In: Biomedical Engineering, Trends in Materials Science, 2011. P. 425.
  7. Contreras M., Sougrat R., Zaher A. et al. // IJN. 2015. V. 10. P. 2141.
  8. Аникин А.А., Шумская Е.Е., Бедин С.А. и др. // Изв. РАН. Сер. физ. 2024. Т. 88. № 4. С. 683; Anikin A.A., Shumskaya E.E., Bedin S.A. et al. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. No. 6. P. 1010.
  9. Mansell R., Venulkar T., Petit D.C.M.C. et al. // Sci. Reports. 2017. V. 7. Art. No. 4257.
  10. Efremova M.V., Naumenko V.A., Spasova M. et al. // Sci. Reports. 2018. V. 8. Art. No. 11295.
  11. Shi X., Tian Y., Liu Y. et al. // Front. Oncol. 2022. V. 12. Art. No. 939365.
  12. Espinosa A., Kolosnijaj-Tabi J., Abou-Hassan A. et al. // Adv. Funct. Mater. 2018. V. 28. Art. No. 1803660.
  13. Субекин А.Ю., Пылев Т.Е., Кукушкин В.И. и др. // Изв. РАН. Сер. физ. 2024. Т. 88. № 2. С. 211; Subekin A.Y., Pydeev T.E., Kukushkin V.I. et al. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. P. 178.
  14. Venermo J., Silvola A. // J. Electrostat. 2005. V. 63. P. 101.
  15. Bohren C.F., Huffman D.R. Absorption and Scattering of Light by Small Particles. N.Y.: Wiley, 1983. 533 p.
  16. Johnson P.B., Christy R.W. // Phys. Rev. B. 1972. V. 6. P. 4370.
  17. Johnson P.B., Christy R.W. // Phys. Rev. B. 1974. V. 9. P. 5056.
  18. Roper D.K., Ahn W., Hoepfner M. // J. Phys. Chem. C. 2007. V. 111. P. 3636.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025