Extended Analytical Model for the Description of Light Absorption Spectra of Linear Molecular Aggregates

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study optical properties of linear dye aggregates in which the transition dipole matrix elements of two monomer molecules forming their unit cell are not coplanar with the aggregate axis, and the Frenkel exciton is delocalized along this axis. An analytical model has been developed for the description of polarization effects in the light absorption spectra of such aggregates. It is shown that the nature of their optical spectra differs drastically from previously studied linear aggregates with a single molecule per unit cell. The developed theory contains simple formulas of the well-known Davydov–McRae–Kasha model for conventional linear aggregates as a particular case. A quantitative explanation of the experimental data is given for the absorption spectra of the pseudoisocyanine bromide dye aggregate.

作者简介

S. Moritaka

Lebedev Physical Institute, Russian Academy of Sciences

Email: vlebedev@lebedev.ru
119991, Moscow, Russia

V. Lebedev

Lebedev Physical Institute, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: vlebedev@lebedev.ru
119991, Moscow, Russia

参考

  1. F. P. Garc'ia de Arquer, A. Armin, P. Meredith, and E. H. Sargent, Nat. Rev. Mater. 2, 16100 (2017).
  2. Q. Guo, R. Sekine, L. Ledezma, R. Nehra, D. J. Dean, A. Roy, R. M. Gray, S. Jahani, and A. Marandi, Nature Photon. 16, 625 (2022); https://doi.org/10.1038/s41566-022-01044-5.
  3. П. Тонкаев, Ю. Кившарь, Письма в ЖЭТФ 112, 658 (2020)
  4. P. Tonkaev and Y. Kivshar, JETP Lett. 112, 615 (2020); https://doi.org/10.1134/S0021364020220038.
  5. S. I. Azzam, A. V. Kildishev, R.-M. Ma, C.-Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J.-L. Xu, and X. Zhang, Light: Sci. Appl. 9, 90 (2020); https://doi.org/10.1038/s41377-020-0319-7.
  6. А. С. Устинов, А. С. Шорохов, Д. А. Смирнова, Письма в ЖЭТФ 114, 787 (2021)
  7. A. S. Ustinov, A. S. Shorokhov, and D. A. Smirnova, JETP Lett. 114, 719 (2021); https://doi.org/10.1134/S0021364021240012.
  8. J. H. Kim, T. Schembri, D. Bialas, M. Stolte, and F. Wu¨rthner, Adv. Mater. 34, 2104678 (2021).
  9. B. I. Shapiro, A. D. Nekrasov, V. S. Krivobok, and V. S. Lebedev, Opt. Express 26, 30324 (2018).
  10. А. C. Давыдов, Теория молекулярных экситонов, Наука, М. (1968)
  11. A. S. Davydov, Theory of Molecular Excitons, Plenum Press, N.Y. (1971).
  12. E. G. McRae and M. Kasha, J. Chem. Phys. 28, 721 (1958); https://doi.org/10.1063/1.1744225.
  13. N. J. Hestand and F. C. Spano, Chem. Rev. 118, 7069 (2018); https://doi.org/10.1021/acs.chemrev.7b00581.
  14. T. Brixner, R. Hildner, J. K¨ohler, C. Lambert, and F. Wu¨rthner, Adv. Energy Mater. 7, 1700236 (2017); https://doi.org/10.1002/aenm.201700236.
  15. O. Yakar, O. Balci, B. Uzlu, N. Polat, O. Ari, I. Tunc, C. Kocabas, and S. Balci, ACS Appl. Nano Mater. 3, 409 (2020); https://doi.org/10.1021/acsanm.9b02039.
  16. S. B. Anantharaman, J. Kohlbrecher, G. Rain'o, S. Yakunin, T. St¨oferle, J. Patel, M. Kovalenko, R. F. Mahrt, F. A. Nu¨esch, and J. Heier, Adv. Sci. 8, 1903080 (2021); https://doi.org/10.1002/advs.201903080.
  17. C. Wang and E. A. Weiss, Nano Lett. 17, 5666 (2017); https://doi.org/10.1021/acs.nanolett.7b02559.
  18. F. Herrera and M. Litinskaya, J. Chem. Phys. 156, 114702 (2022); https://doi.org/10.1063/5.0080063.
  19. A. D. Kondorskiy, S. S. Moritaka, and V. S. Lebedev, Opt. Express 30, 4600 (2022); https://doi.org/10.1364/OE.446184.
  20. A. D. Kondorskiy and V. S. Lebedev, Opt. Express 27, 11783 (2019); https://doi.org/10.1364/OE.27.01178.
  21. D. Melnikau, P. Samokhvalov, A. S'anchez-Iglesias, M. Grzelczak, I. Nabiev, and Y. P. Rakovich, J. Lumin. 242, 118557 (2022); https://doi.org/10.1016/j.jlumin.2021.118557.
  22. F. Wu, J. Guo, Y. Huang, Y. Huang, K. Liang, L. Jin, J. Li, X. Deng, R. Jiao, Y. Liu, J. Zhang, W. Zhang, and L. Yu, ACS Nano 15, 2292 (2021); https://doi.org/10.1021/acsnano.0c08274.
  23. A. D. Bailey, A. P. Deshmukh, N. C. Bradbury, M. Pengshung, T. L. Atallah, J. A. Williams, U. Barotov, D. Neuhauser, E. M. Sletten, and J. R. Caram, Nanoscale 15, 3841 (2023); https://doi.org/10.1039/D2NR05747F.
  24. D. M. Eisele, C. W. Cone, E. A. Bloemsma, S. M. Vlaming, C. G. F. van der Kwaak, R. J. Silbey, M. G. Bawendi, J. Knoester, J. P. Rabe, and D. A. Vanden Bout, Nat. Chem. 4, 655 (2012); https://doi.org/10.1038/nchem.1380.
  25. M.-J. Sun, Y. Liu, W. Zeng, Y. S. Zhao, Y.-W. Zhong, and J. Yao, J. Am. Chem. Soc. 141, 6157 (2019); https://doi.org/10.1021/jacs.9b0205.
  26. A. Weissman, H. Klimovsky, D. Harel, R. Ron, M. Oheim, and A. Salomon, Langmuir 36, 844 (2020); https://doi.org/10.1021/acs.langmuir.9b0275.
  27. R. M. Hochstrasser and J. D. Whiteman, J. Chem. Phys. 56, 5945 (1972); https://doi.org/10.1063/1.1677140.
  28. J. Knoester, Int. J. Photoenergy 2006, 061364 (2006); https://doi.org/10.1155/IJP/2006/61364.
  29. K. Misawa, H. Ono, K. Minoshima, and T. Kobayashi, Appl. Phys. Lett. 63, 577 (1993); https://doi.org/10.1063/1.109954.
  30. T. Tani, M. Oda, T. Hayashi, H. Ohno, and K. Hirata, J. Lumin. 122-123, 244 (2007); https://doi.org/10.1016/j.jlumin.2006.01.123.
  31. H. Fidder, Chem. Phys. 341, 158 (2007); https://doi.org/10.1016/j.chemphys.2007.06.016.
  32. C. Guo, M. Aydin, H.-R. Zhu, and D. L. Akins, J. Phys. Chem. B 106, 5447 (2002); https://doi.org/10.1021/jp025567b.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023