Specific electrical conductivity of concentrated solutions of 1-butyl-4-methylpyridinium tetrafluoroborate in dimethylformamide

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The distance between ions and molecules of ionic liquid in solution is estimated. It is found that in the concentration range of 1–2 mol/l, a maximum should be expected on the concentration dependence of specific electrical conductivity (EC), since contact ion pairs are formed in the solution. Specific EC of concentrated solutions of 1-butyl-4-methylpyridinium tetrafluoroborate in dimethylformamide was measured in the temperature range of 10–70°C, and the density of these solutions was measured in the temperature range of 10–60°C. The dependences of specific EC and density on temperature and concentration are analyzed. The density of solutions decreases linearly with increasing temperature, and specific EC passes through a maximum with increasing concentration. With an increase in temperature from 10 to 70°C, the concentration cmax corresponding to the maximum EC κmax increases from 1.258 to 1.825 mol/l. To generalize the temperature and concentration dependences of the specific EC, the normalized EC κ/κmax and normalized concentration c/cmax were used. In the coordinates κ/κmaxc/cmax, all values of the normalized EC κ/κmax fit on to a single curve. It is shown that at concentrations not exceeding ~1.0 mol/l, with increasing temperature, the specific EC κ increases in direct proportion to the limiting high-frequency electrical conductivity of the solvent κ. Based on the analysis of the κ – κ dependencies, the solvation numbers of ionic liquid ions in dimethylformamide were determined, which decrease from 2.89 to 1.09 with an increase in concentration from ~0.1 to ~1.0 mol/l.

Texto integral

Acesso é fechado

Sobre autores

Yu. Artemkina

Mendeleev University of Chemical Technology of Russia

Email: shcherbakov.V.V@muctr.ru
Rússia, Moscow

V. Dzyuba

Mendeleev University of Chemical Technology of Russia

Email: shcherbakov.V.V@muctr.ru
Rússia, Moscow

U. Odinaev

Mendeleev University of Chemical Technology of Russia

Email: shcherbakov.V.V@muctr.ru
Rússia, Moscow

V. Shcherbakov

Mendeleev University of Chemical Technology of Russia

Autor responsável pela correspondência
Email: shcherbakov.V.V@muctr.ru
Rússia, Moscow

Bibliografia

  1. Anastas, P.T. and Warner, J.C. Green Chemistry: Theory and Practice. Oxford University Press, 1998. 135 р.
  2. Ionic Liquids: Industrial Applications to Green Chemistry. Eds. R.D. Rogers and K.R. Seddon, ACS Symp. Ser, vol. 818, American Chemical Society, Washington D.C., 2002. https://doi.org/10.1021/BK-2002-0818
  3. Асланов, Л.А., Захаров, М.А., Абрамычева, Н.Л. Ионные жидкости в ряду растворителей. / М.: Изд-во МГУ, 2005. 272 с. [Aslanov, L.A., Zakharov, M.A., and Abramycheva, N.L. Ionic liquids in a series of solvents (in Russian), Moscow, Publishing House of Moscow State University, 2005. 272 p.]
  4. Plechkova, N.V. and Seddon, K.R., Applications of ionic liquids in the chemical industry, Chem. Sic. Rev., 2008, vol. 37, p. 123. https://doi.org/10.1039/b006677j
  5. Иoнные жидкoсти: теoрия и практика. (Прoблемы химии раствoрoв) / Oтв. ред. А.Ю. Цивадзе. Иванoвo: АO “Иванoвский издательский дoм”, 2019. 672 с. [Ionic liquids: theory and practice. (Problems of solution chemistry) (in Russian) / Ed. A.Yu. Tsivadze. Ivanovo: “Ivanovo Publishing House”. 2019. 672 p.]
  6. Qin, J., Lan, Q., Liu, N., Men, F., Wang, X., Song, Z., and Zhan, H., A Metal-free Battery with Pure Ionic Liquid Electrolyte, iScience, 2019, vol. 15, p. 16. https://doi.org/10.1016/j.isci.2019.04.010
  7. Liu, H. and Yu, H., Ionic liquids for electrochemical energy storage devices applications, J. Mat. Sci. Techn., 2019, vol. 35, p. 674. https://doi.org/10.1016/j.jmst.2018.10.007 1005-0302
  8. Seddon, K.R., Stark, A., and Torres, M.-J., Influence of chloride, water, and organic solvents on the physical properties of ionic liquids, Pure and Appl. Chem., 2000, vol. 72, p. 2275. https://doi.org/10.1351/pac200072122275
  9. Rilo, E., Vila, J., Pico, J., Garcia-Garabal, S., Segade, L., Varela, L.M., and Cabeza, O., Electrical conductivity and viscosity of aqueous binary mixtures of 1-alkyl-3-methyl imidazolium tetrafluoroborate at four temperatures, J. Chem. Eng. Data, 2009, vol. 55, p. 639. https://doi.org/10.1021/je900600c
  10. Chaban, V.V., Voroshylova, I.V., Kalugin, O.N., and Prezhdo, O.V., Acetonitrile boosts conductivity of imidazolium ionic liquids, J. Phys. Chem., 2012, vol. B116, p. 7719. https://dx.doi.org/10.1021/jp3034825
  11. Kalugin, O.N., Voroshylova, I.V., Riabchunova, A.V., Lukinova, E.V., and Chaban, V.V., Conductometric study of binary systems based on ionic liquids and acetonitrile in a wide concentration range, Electrochim. Acta, 2013, vol. 105, p. 188. http://dx.doi.org/10.1016/j.electacta.2013.04.140
  12. Dobos, D., Electrochemical Data. A Handbook for Electrochemists in Industry and Universities, Budapest: Akadémiai Kiädö, 1978.
  13. Lobo, V.M.M. and Quaresma, J.L. Handbook of electrolyte solutions. Amsterdam: Elsevier, 1989, 2353 p.
  14. Barthel, J., Electrolytes in Non-Aqueous Solvents, Pure and Appl. Chem., 1979, vol. 51 (10), p. 2093. https://doi.org/10.1351/pac197951102093
  15. Vila, J., Ginés, P., Rilo, E., Cabeza, O., and Varela, L.M., Great increase of the electrical conductivity of ionic liquids in aqueous solutions, Fluid Phase Equilibria, 2006, vol. 247, p. 32. https://doi.org/10.1016/j.fluid.2006.05.028
  16. Nishida, T., Tashiro, Y., and Yamamoto, M., Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte, J. Fluorine Chem., 2003, vol. 120, p. 135. https://doi.org/10.1016/S0022-1139(02)00322-6
  17. Diaw, M., Chagnes, A., Carr’e, B., Willmann, P., and Lemordant, D., Mixed ionic liquid as electrolyte for lithium batteries, J. Power Sources, 2005, vol. 146(1–2), p. 682. https://doi.org/10.1016/j.jpowsour.2005.03
  18. François, Y., Zhang, K., Varenne, A., and Gareil, P., New integrated measurement protocol using capillary electrophoresis instrumentation for the determination of viscosity, conductivity and absorbance of ionic liquid–molecular solvent mixtures, Analyt. Chim. Acta, 2006, vol. 562(2), p. 164. https://doi.org/10.1016/j.aca.2006.01.036
  19. Liu, W., Zhao, T., and Zhang, Y., The Physical Properties of Aqueous Solutions of the Ionic Liquid [BMIM][BF4], J. Solut. Chem., 2006, vol. 35, p. 1337. https://doi.org/10.1007/s10953-006-9064-7
  20. Jarosik, A., Krajewski, S.R., Lewandowski, A., and Radzimski, P., Conductivity of ionic liquids in mixtures, J. Mol. Liquids, 2006, vol. 123, 43. https://doi.org/10.1016/j.molliq.2005.06.001
  21. Liu, W., Cheng, L., Zhang, Y., Wang, H., and Yu, M., The physical properties of aqueous solution of room-temperature ionic liquids based on imidazolium: database and evaluation, J. Mol. Liquids, 2008, vol. 140, p. 68. https://doi.org/10.1016/j.molliq.2008.01.008
  22. Herzig, T., Schreiner, C., and Bruglachner, H., Temperature and Concentration Dependence of Conductivities of Some New Semichelatoborates in Acetonitrile and Comparison with Other Borates, J. Chem. Eng. Data, 2008, vol. 53, p. 434. https://doi.org/10.1021/je700525h
  23. Stoppa, A., Hunger, J., and Buchner, R., Conductivities of binary mixtures of ionic liquids with polar solvents, J. Chem. Eng. Data, 2009, vol. 54, p. 472. https://doi.org/10.1021/je800468h
  24. Zhu, A., Wang, J., Han, L., and Fan, M., Measurements and correlation of viscosities and conductivities for the mixtures of imidazolium ionic liquids with molecular solutes, Chem. Eng. J., 2009, vol. 147(1), p. 27. https://doi.org/10.1016/j.cej.2008.11.013
  25. Zarrougui, R., Dhahbi, M., and Lemordant, D., Effect of temperature and composition on the transport and thermodynamic properties of binary mixtures of ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and propylene carbonate, J. Solut. Chem., 2010, vol. 39, p. 921. https://doi.org/10.1007/s10953-010-9562-5
  26. Li, J.-G., Hu, Y.-F., Jin, C.-W., Chu, H.-D., Peng, X.-M., and Liang, Y.-G., Study on the Conductivities of Pure and Aqueous Bromide-Based Ionic Liquids at Different Temperatures, J. Solut. Chem., 2010, vol. 39, p. 1877. https://doi.org/10.1007/s10953-010-9576-z
  27. Rilo, E., Vila, J., García, M., Varela, L.M., and Cabeza, O., Viscosity and electrical conductivity of binary mixtures of CnMIM-BF4 with ethanol at 288K, 298K, 308K, and 318K, J. Chem. Eng. Data, 2010, v. 55, p. 5156. https://doi.org/10.1021/je100687x
  28. Zarrougui, R., Dhahbi, M., and Lemordant, D., Volumetric and transport properties of N-Butyl-N-methylpyrrolidinium bis (Trifluoromethanesulfonyl)imide–methanol binary mixtures, Ionics, 2011, vol. 17, p. 343. https://doi.org/10.1007/s11581-010-0511-5
  29. Lopes, J.N.C., Gomes, M.F.C., Husson, P., Pádua, A., Rebelo, L.P., Sarraute, S., and Tariq, M., Polarity, viscosity, and ionic conductivity of liquid mixtures containing [C4C1im][Ntf2] and a molecular component, J. Phys. Chem. B, 2011, vol. 115, p. 6088. https://dx.doi.org/10.1021/jp2012254
  30. Zhang, Q.G., Sun, S.S., Pitula, S., Liu, Q., and Welz-Biermann, U., Electrical conductivity of solutions of ionic liquids with methanol, ethanol, acetonitrile, and propylene carbonate, J. Chem. Eng. Data, 2011, vol. 56, p. 4659. https://doi.org/10.1021/je200616t
  31. Rilo, E., Vila, J., García-Garabal, S., Varela, L.M., and Cabeza, O., Electrical Conductivity of Seven Binary Systems Containing 1Ethyl-3-methyl Imidazolium Alkyl Sulfate Ionic Liquids with Water or Ethanol at Four Temperatures, J. Phys. Chem. B, 2013, vol. 117, p. 1411. https://dx.doi.org/10.1021/jp309891j
  32. Andanson, J.-M., Traïkia, M., and Husson, P., Ionic association and interactions in aqueous methylsulfate alkyl-imidazolium-based ionic liquids, J. Chem. Thermodynam., 2014, vol. 77, p. 214. http://dx.doi.org/10.1016/j.jct.2014.01.031 0021-9614
  33. Xu, L., Cui, X., Zhang, Y., Feng, T., Lin, R., Li, X., and Jie, H., Measurement and correlation of electrical conductivity of ionic liquid [EMIM][DCA] in propylene carbonate and γ-butyrolactone, Electrochim. Acta, 2015, vol. 174, p. 900. https://doi.org/10.1016/j.electacta.2015.06.053
  34. Saba, H., Yumei, Z., and Huaping, W., Physical Properties and Solubility Parameters of 1-Ethyl-3-methylimidazolium Based Ionic Liquids/DMSO Mixtures at 298.15 K, Russ. J. Phys. Chem. A, 2015, vol. 89 (13), p. 2381. https://doi.org/10.1134/S0036024415130324
  35. Papović, S., Gadžurić, S., Bešter-Rogač, M., and Vranes, M., Effect of the alkyl chain length on the electrical conductivity of six (imidazolium-based ionic liquids + c-butyrolactone) binary mixtures, J. Chem. Thermodynam., 2016, vol. 102, p. 367. http://dx.doi.org/10.1016/j.jct.2016.07.039
  36. Papović, S., Gadžurić, S., Bešter-Rogač, M., Jovic, B., and Vranes, M., A systematic study on physicochemical and transport properties of imidazolium-based ionic liquids with γ-butyrolactone, J. Chem. Thermodynam., 2018, vol. 116, p. 330. https://doi.org/10.1016/j.jct.2017.10.004
  37. Arkhipova, E.A., Ivanov, A.S., Maslakov, K.I., Savilov, S., and Lunin, V.V., Effect of cation structure of tetraalkylammonium- and imidazolium-based ionic liquids on their conductivity, Electrochim. Acta, 2019, vol. 297, p. 842. https://doi.org/10.1016/j.electacta.2018.12.002
  38. Артемкина, Ю.М., Карпуничкина, И.А., Плешкова, Н.В., Щербаков, В.В. Электропроводность концентрированных растворов 1-бутил-3-метилпиридиний бис{(трифторметил)сульфонил}имида в ацетонитриле, диметилсульфоксиде и диметилформамиде. Вестн. МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2023. № 5 (110). С. 90. [Artemkina, Yu.M., Karpunichkina, I.A., Pleshkova, N.V., and Shcherbakov, V.V., Electrical conductivity of concentrated solutions of 1-butyl-3-methylpyridinium bis{(trifluoromethyl)sulfonyl}imide in acetonitrile, dimethyl sulfoxide and dimethylformamide, Herald of the Bauman Moscow State Technical University, Series Natural Sciences (in Russian), 2023, no. 5 (110), p. 90.]. https://doi.org/https://doi.org/10.18698/1812-3368-2023-5-90-121
  39. Casteel, J.F. and Amis, E.S., Specific Conductance of Concentrated Solutions of Magnesium Salts in Water-Ethanol System, J. Chem. Eng. Data, 1972, vol. 17(1), p. 55.
  40. Щербаков, В.В. Закономерности в электропроводности концентрированных растворов сильных электролитов. Электрохимия. 2009. Т. 45. С. 1394. [Shcherbakov, V.V., Regularities in the electrical conductivity of concentrated solutions of strong electrolytes, Russ. J. Electrochem., 2009, vol. 45, p. 1292.]. https://doi.org/10.1134/S102319350911010X
  41. Артемкина, Ю.М., Щербаков, В.В. Электропроводность систем ассоциированный электролит – вода. Журн. неорган. химии. 2010. Т. 55(9). С. 1573. [Artemkina, Yu.M. and Shcherbakov, V.V., Electrical conductivity of systems associated electrolyte – water, Russ. J. Inorg. Chem., 2010, vol. 55(9), p. 1487.] https://doi.org/10.1134/S0036023610090251
  42. Артемкина, Ю.М., Щербаков, В.В. Математическое описание концентрационной зависимости удельной электропроводности водных растворов сильных электролитов. Успехи в химии и химической технологии: Сб. науч. тр. М.: РХТУ им. Д.И. Менделеева. 2011. Т. 25. № 3. С. 22. [Artemkina, Yu.M. and Shcherbakov, V.V., Mathematical description of the concentration dependence of the specific electrical conductivity of aqueous solutions of strong electrolytes, Advances in chemistry and chemical technology: collection of scientific papers. Moscow: Mendeleyev University of Chemical Technology of Russia (in Russian), 2011, vol. 25, no. 3, p. 22.]
  43. Shcherbakov, V.V., Artemkina, Yu.M., Akimova, I.A., and Artemkina, I.M., Dielectric Characteristics, Electrical Conductivity and Solvation of Ions in Electrolyte Solutions, Materials, 2021, Issue 19, 1340690. https://doi.org/10.3390/ma14195617
  44. Щербаков, В.В., Ермаков, В.И., Артемкина, Ю.М. Диэлектрические характеристики воды и электропроводность водных растворов электролитов. Электрохимия. 2017. Т. 53. С. 1479. [Shcherbakov, V.V., Ermakov, V.I., and Artemkina, Yu.M., Dielectric Characteristics of Water and Electric Conductivity of Aqueous Electrolytes, Russ. J. Electrochem., 2017, vol. 53, p. 1301.] https://doi.org/10.1134/s1023193517120102
  45. Щербаков, В.В., Артемкина, Ю.М. Диэлектрические свойства растворителей и их предельная высокочастотная электропроводность. Журн. физ. химии. 2013. Т. 87. С. 1058. [Shcherbakov, V.V. and Artemkina, Yu.M., Dielectric properties of solvents and their limiting high-frequency electrical conductivity, Russ. J. Phys. Chem. A, 2013, vol. 87, p. 1048.] https://doi.org/https://doi.org/10.7868/S0044453713060241
  46. Barthel, J., Feuerlein, F., Neueder, R., and Wachter, R.J., Calibration of conductance cells at various temperatures, J. Solut. Chem., 1980, vol. 9, p. 209. https://doi.org/10.1007/BF00648327
  47. Wu, Y.C., Koch, W.F., and Pratt K.W., Proposed new electrolytic conductivity primary standards for KCl solutions, J. Res. Natl. Inst. Stand. Technol., 1991, vol. 96, p. 191. https://doi.org/10.6028/jres.096.008
  48. Seddon, K.R., Stark, A., and Torres, M.J., Viscosity and Density of 1-Alkyl-3-methylimidazolium Ionic Liquids. In: M.A. Abraham, L. Moens, Eds., Clean Solvents: Alternative Media for Chemical Reactions and Processing, American Chemical Society, Washington, 2002, p. 34–49. https://doi.org/10.1021/bk-2002-0819.ch004
  49. Kilaru, P., Baker, G.A., and Scovazzo, P., Density and Surface Tension Measurements of Imidazolium-, Quaternary Phosphonium-, and Ammonium-Based Room-Temperature Ionic Liquids: Data and Correlations, J. Chem. Eng. Data, 2007, vol. 52, p. 2306. https://doi.org/10.1021/je7003098
  50. Machanová, K., Boisset, A., Sedláková, Z., Anouti, M., Bendová, M., and Jacquemin, J., Thermophysical properties of ammonium-based bis{(trifluoromethyl)sulfonyl} imide ionic liquids: Volumetric and transport properties, J. Chem. Eng. Data, 2012, vol. 57(8), p. 2227. https://doi.org/10.1021/je300108z
  51. Иванов, А.А. Электропроводность водных растворов кислот и гидроксидов. Изв. вузов. Химия и хим. технология. 1989. Т. 32. Вып. 10. С. 3. [Ivanov, A.A., Electrical conductivity of aqueous solutions of acids and hydroxides, Izv. Vyssh. Ucheb. Zaved. Khim. Khim. Tekhnol. (in Russian), 1989, vol. 32, no. 10, p. 3.]
  52. Иванов, А.А. Электропроводность водных растворов кислот в бинарных и тройных водно-электролитных системах. Журн. неорган. химии. 2008. Т. 53. С. 2081. [Ivanov, A.A., Electrical conductivity of aqueous solutions of acids in binary and ternary water-electrolyte systems, Russ. J. Inorg. Chem., 2008, vol. 53, p. 1948.]
  53. Barthel, J., Wachter, R., and Gores, H.-J., Temperature Dependence of Conductence of Electrolytes in Nonaqueous Solutions, Modern Aspects of Electrochemistry, Ed. by B.E. Conway and J.O’M. Bockris, 1979, no. 13, p. 1–79. https://doi.org/10.1007/978-1-4615-7455-2_1

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Dependence of the density of [BuMPy][BF₄] solutions in DMF on temperature; the concentrations of the solutions are given in Table 2.

Baixar (340KB)
3. Fig. 2. Dependence of the specific EC κ of [BuMPy][BF₄] solutions in DMF on the concentration c (a) and the normalized specific EC κ/κₘₐₓ on the normalized concentration c/cₘₐₓ (b); temperature values ​​(°C) are shown on the graphs.

Baixar (418KB)
4. Fig. 3. Dependence of the maximum specific EP κₘₐₓ on the corresponding concentration cₘₐₓ; temperature values ​​(°C) are shown on the graph.

Baixar (108KB)
5. Fig. 4. Dependence of the specific EP of [BuMPy][BF₄] solutions in DMF on the limiting HF EP of the solvent for relatively dilute (a) and concentrated (b) solutions; the concentration values ​​(M) of the solutions (1–6, 10–17) are given in Table 1.

Baixar (314KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025