Perspectives of electron-beam and ion-beam lithography development in Russia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The development of national resists for electron-beam and ion-beam lithography processes is reviewed. Positive resists based on polymethyl methacrylate allow to create nanoscale structures. Moreover, the possibility of using a combination of the created resists as bilayer resist is demonstrated. The perspectives of the development of national processes of electron-beam and ion-beam lithography are also demonstrated. At the present moment own national technological processes of electron-beam and ion-beam lithography are at the stage of demonstrators. In the near future, national electron-beam and ion-beam lithography devices will be developed. It will take significantly more time to organize production of national ion-beam lithography equipment.

About the authors

S. I. Zaitsev

Institute of Microelectronics Technology and High Purity Materials Russian Academy of Sciences

Email: rochtch@iptm.ru
Moscow, Russia

D. V. Irzhak

Institute of Microelectronics Technology and High Purity Materials Russian Academy of Sciences

Email: rochtch@iptm.ru
Moscow, Russia

A. I. Il’in

Institute of Microelectronics Technology and High Purity Materials Russian Academy of Sciences

Email: rochtch@iptm.ru
Moscow, Russia

M. A. Knyazev

Institute of Microelectronics Technology and High Purity Materials Russian Academy of Sciences

Email: rochtch@iptm.ru
Moscow, Russia

D. V. Roshchupkin

Institute of Microelectronics Technology and High Purity Materials Russian Academy of Sciences

Email: rochtch@iptm.ru
Moscow, Russia

V. P. Grachev

Federalo Research Center of Problems of Chemical Physics and Medical Chemistry RAS

Email: rochtch@iptm.ru
Черноголовка, Россия

V. G. Kurbatov

Federalo Research Center of Problems of Chemical Physics and Medical Chemistry RAS

Email: rochtch@iptm.ru
Черноголовка, Россия

G. V. Malkov

Federalo Research Center of Problems of Chemical Physics and Medical Chemistry RAS

Author for correspondence.
Email: rochtch@iptm.ru
Черноголовка, Россия

References

  1. Buitrago E., Kulmala T.S., Felica R., Ekinci Y. Chapter 4 – EUV lithography process challenge. Frontiers of Nanoscience. Elsevier. 2016. V. 11. P. 135–176. https://doi.org/10.1016/B978-0-08-100354-1.00004-1
  2. Fu N., Liu Y., Ma X., Chen Z. EUV Lithography: State-of-the-Art Review // J. Microelectron. Manuf. 2019. V. 2. P. 19020202. https://doi.org/10.33079/jomm.19020202
  3. Grigorescu A.E., Hagen C.W. Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art // Nanotechnology. 2009. V. 20. P. 292001. https://doi.org/10.1088/0957-4484/20/29/292001
  4. Winston D., Cord B.M., Ming B., Bell D.C., DiNatale W.F., Stern L.A., Vladar A.E., Postek M.T., Mondol M.K., Yang J.K.W., Berggren K.K. Scanning-helium-ion-beam lithography with hydrogen silsesquioxane resist // J. Vac. Sci. Technol. 2009. V. B27. P. 2702–2706. https://doi.org/10.1116/1.3250204
  5. Shabelnikova Ya.L., Zaitsev S.I. Ion-beam lithography: modelling and analytical description of the deposited in resist energy // Technical Physics. 2022. V. 67. P. 919–923. https://doi.org/10.21883/TP.2022.08.54550.104-22
  6. Joshi-Imre A., Bauerdick S. Direct-Write Ion Beam Lithograph // Journal of Nanotechnology. 2014. V. 2014. P. 170415. http://dx.doi.org/10.1155/2014/170415
  7. Jung Y., Cheng X. Dual-layer thermal nanoimprint lithography without dry etching // J. Micromech. Microeng. 2012. V. 22. P. 085011. https://doi.org/10.1088/0960-1317/22/8/085011
  8. Lan H., Ding Y., Liu H., Lu B. Development of a step micro-imprint lithography tool // J. Micromech. Microeng. 2007. V. 17. P. 2039–2048. https://doi.org/10.1088/0960-1317/17/10/016
  9. Sakharov S., Roshchupkin D., Emelin E., Irzhak D., Buzanov O., Zabelin A. X-ray diffraction investigation of high-temperature SAW sensor based on LGS crystal // Procedia Engineering. 2011. V. 25. P. 1020–1023.https://doi.org/10.1016/j.proeng.2011.12.251
  10. Grigoriev M., Fakhrtdinov R., Irzhak D., Firsov Al., Firsov An., Svintsov A., Erko A., Roshchupkin D. Two-dimensional X-ray focusing by off-axis grazing incidence phase Fresnel zone plate on the laboratory X-ray source // Optics Communications. 2017. V. 385. P. 15–18.https://doi.org/10.1016/j.optcom.2016.10.024
  11. Irzhak D.V., Knyasev M.A., Punegov V.I., Roshchupkin D.V. X-ray diffraction by phase diffraction gratings // J. Appl. Cryst. 2015. V. 48. P. 1159–1164. https://doi.org/10.1107/S1600576715011607
  12. Brodie I., Muray J.J. The physics of microfabrictaion. Plenum Press. New York and London, 1982. https://doi.org/10.1007/978-1-4899-2160-4

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences