Respiratory activity and biosynthesis of alkaloids by the fungus Penicillium citrinum Thom

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The fungus Penicillium citrinum VKM F-4043D isolated from ancient permafrost deposits in the Arctic is an active producer of quinoline alkaloids (quinocitrinines A and B) and clavine ergot alkaloids (agroclavine-I and epoxyagroclavine-I). During fungal growth in a medium with two non-fermentable substrates — succinate and mannitol, the dynamics of respiratory activity was studied. Oxygen consumption by cells was shown to be associated with the dynamics of two-phase synthesis of biomass and alkaloids, the maximum respiratory activity had been coincided with the maximum rates of alkaloid synthesis and biomass accumulation. As shown by inhibitory analysis of fungal respiration, along with the main, cytochrome, respiratory chain, an alternative, cyanide-resistant, electron transfer pathway functions, which is suppressed by benzhydroxamic acid. It has been shown that the fungus P. citrinum is capable of growing in the presence of antimycin A, an inhibitor of electron transfer in the cytochrome region of the respiratory chain. In this case, the alternative oxidase functions as the only terminal oxidase capable of supporting fungal growth and alkaloid biosynthesis. When glucose was used as a growth substrate, biosynthesis of both alkaloids and cyanide-resistant oxidase was not observed.

全文:

受限制的访问

作者简介

А. Arinbasarova

FRC Pushchino Centre for Biological Research, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: aarin@rambler.ru

Skryabin Institute of Biochemistry and Physiology of Microorganisms

俄罗斯联邦, Pushchino, 142290

T. Antipova

FRC Pushchino Centre for Biological Research, Russian Academy of Sciences

Email: aarin@rambler.ru

Skryabin Institute of Biochemistry and Physiology of Microorganisms

俄罗斯联邦, Pushchino, 142290

V. Zhelifonova

FRC Pushchino Centre for Biological Research, Russian Academy of Sciences

Email: aarin@rambler.ru

Skryabin Institute of Biochemistry and Physiology of Microorganisms

俄罗斯联邦, Pushchino, 142290

A. Medentsev

FRC Pushchino Centre for Biological Research, Russian Academy of Sciences

Email: aarin@rambler.ru

Skryabin Institute of Biochemistry and Physiology of Microorganisms

俄罗斯联邦, Pushchino, 142290

参考

  1. Chen W.H., Song M.M., Pang X.Y., Tian X.P., Wang F.Z., Liu Y.H., Wang J.F. // Nat. Prod. Res. 2023. V. 37. № 3. P. 389–396.
  2. Kozlovsky A.G., Kochkina G.A., Zhelifonova V.P., Antipova Т.V., Ivanushkina N.E., Ozerskaya S.M. // Folia Microbiol. 2020. V. 65. P. 95–102.
  3. Frisvad J.C., Smedsgaard J., Larsen T.O., Samson R.A. // Studies in Mycology. 2004. V. 49. P. 201–241.
  4. Козловский А.Г., Антипова Т.В., Желифонова В.П. // Прикл. биохимия и микроб. 2015. Т. 51. № 2. С. 236–241.
  5. Pang X., Lin X., Zhou X., Yang B., Tian X., Wang J., Xu Sh., Liu Y. // Fitoterapia. 2020. V. 140. P. 104406.
  6. Jian J.Y., Fan Y.M., Liu Q., Jin J., Yuan C.M., Gu W. et al. // Chem Biodivers. 2023. V. 20. № 2. P. e202201097.
  7. Khan M.S., Gao J., Zhang M., Xue J., Zhang X. // PLoS One. 2022. V. 17. № 6. P. e0269640.
  8. da Silva M.F.d.G.F., Fernandes J.B., Forim M.R., Vieira P.C., de Sá I.C.G. Natural Products. / Ed. K. Ramawat, J.M. Mérillon, JM. Berlin, Heidelberg: Springer, 2013. P. 715–859.
  9. Thawabteh A., Juma S., Bader M., Karaman D., Scrano L., Bufo S.A., Karaman R. // Toxins. 2019. V. 11. № 11. P. 656.
  10. Takahashi S., Kakinuma N., Iwai H., Yanagisawa T., Nagai K., Suzuki K. et al. // J. Antibiot. (Tokyo). 2000. V. 53. № 11. P. 1252–1256.
  11. Shahid M.G., Nadeem M., Gulzar A., Saleem M., Rehman H.U., Ghafoor G.Z. et al. // Toxins. 2020. V. 12. № 7. P. 427. https://doi.org/10.3390/toxins12070427
  12. Козловский А.Г., Желифонова В.П., Аданин В.М., Озерская С.М., Кочкина Г.А., Грефе У. // Микробиология. 2003. Т. 72. № 6. С. 816–821.
  13. Kozlovsky A.G., Zhelifonova V.P., Antipova T.V., Adanin V.M., Ozerskaya S.M., Kochkina G.A. et al. // J. Antibiot (Tokyo). 2003. V. 56. № 5. P. 488–491.
  14. Патент РФ 2010. № 2386692.
  15. Аринбасарова А.Ю. Меденцев А.Г., Козловский А.Г. // Прикл. биохимия и микроб. 2007. Т. 43. № 6. С. 701–704.
  16. Акименко В.К., Козловский А.Г., Меденцев А.Г., Головченко Н.П., Аринбасаров М.У. // Биохимия. 1976. T. 41. № 12. P. 2220–2227.
  17. Меденцев А.Г., Аринбасарова А.Ю., Акименко В.К. // Биохимия. 1999. T. 64. C. 1457–1472.
  18. Козловский А.Г., Желифонова В.П., Антипова Т.В., Зеленкова Н.Ф. // Прикл. биохимия и микробиология. 2010. Т. 46. № 5. С. 572–576.
  19. Перт С.Д. Основы культивирования микроорганизмов и клеток. М.: Мир, 1978. 331 c.
  20. Козловский А.Г., Желифонова В.П., Антипова Т.В. // Прикл. биохимия и микроб. 2013. Т. 49. № 1. С. 5–16.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Scheme of the respiratory chain of fungi, yeast and plants [16]. Cyanidin-resistant alternative oxidase branches off from the main respiratory chain at the level of ubiquinone (coenzyme Q), is activated by AMP and inhibited by benzhydroxamic acid (BHA).

下载 (190KB)
3. Fig. 2. Biosynthesis of metabolites (a) and respiratory activity (b) during growth of the fungus P. citrinum in a medium containing succinate and mannitol. (a): 1 — biomass (g/l); 2 — ergot alkaloids (mg/l); 3 — quinocitrinins (mg/l). (b): 1 — oxygen consumption in the absence of inhibitors; 2 — oxygen consumption in the presence of 1 mM KCN (the maximum possible activity of alternative oxidase); 3 — real activity of alternative oxidase; 4 — respiration in the presence of 1 mM KCN and 5 mM BHC.

下载 (150KB)
4. Fig. 3. Biosynthesis of metabolites (a) and respiratory activity (b) during growth of the fungus P. citrinum in the presence of antimycin A (10 μM). (a): 1 – biomass (g/l); 2 – ergot alkaloids (mg/l); 3 – quinocitrinins (mg/l); (b): 1 – oxygen consumption in the presence of antimycin A; 2 – oxygen consumption in the presence of antimycin A and 5 mM BHA.

下载 (133KB)

版权所有 © Russian Academy of Sciences, 2025