Abstract
The two-fluid and two-temperature diffusion-drift model of gas-discharge plasma is used to study numerically the structure of the Penning discharge in a cylindrical discharge chamber at the molecular hydrogen pressure of 1 mTorr, the voltage between the electrodes of 500–1000 V, and the axial magnetic field induction of 0.001–0.2 T. Two regimes of existence of the Penning discharge are obtained in the calculations. These regimes differ qualitatively in the electrodynamic structure of the charged-particle flows of gas-discharge plasma, as well as there exist transient and extinction regimes in the weak and strong magnetic fields. The conditions under which the oscillatory motion of electron and ion flows develops in the paraxial regions are found. It is shown that the results of numerical simulation with the use of the diffusion-drift model make it possible to obtain consistent data in comparison with experiment, and at the same time to get an insight about the formation of the structure of flows of electric-discharge plasma particles. This makes it possible to explain the observed experimental data.