Fatigue life of titanium alloy Ti–6Al–4V obtained by additive cold metal transfer technology
- 作者: Ilinykh А.V.1, Pankov А.М.1, Lykova А.V.1, Permyakov G.L.1, Simonov М.Y.1, Trushnikov D.N.1
-
隶属关系:
- Perm National Research Polytechnic University
- 期: 编号 3 (2025)
- 页面: 161-177
- 栏目: Articles
- URL: https://rjmseer.com/1026-3519/article/view/687423
- DOI: https://doi.org/10.31857/S1026351925030099
- EDN: https://elibrary.ru/BALUSN
- ID: 687423
如何引用文章
详细
The work presents the experimental study results of the titanium alloy Ti–6Al–4V fatigue life obtained during additive manufacturing by wire-arc surfacing using the cold metal transfer welding. This additive manufacturing technology is used for fusing large-sized products in the Laboratory of methods for creating and designing systems “material-technology-construction” PNRPU. The quality of the resulting blank is confirmed by the results of chemical analysis, microstructural research and static tensile tests. Samples were cut from the deposited plate in the longitudinal and transverse direction with respect to the formation plane of the layers. Experimental studies of fatigue life were conducted in the Center of Experimental Mechanics PNRPU using Instron testing equipment. According to the test results, the dependences of cyclic durability on the level of applied stresses are obtained. It is noted that the direction of cutting samples from the deposited fragment significantly affect to the resistance characteristics of the low- and high-cycle fatigue of the additive titanium alloy VT6. It is concluded that there is a significant anisotropy of cyclic properties, which must be taken into account when designing and manufacturing products from additive materials.
全文:

作者简介
А. Ilinykh
Perm National Research Polytechnic University
编辑信件的主要联系方式.
Email: ilinih@yandex.ru
俄罗斯联邦, Perm
А. Pankov
Perm National Research Polytechnic University
Email: ilinih@yandex.ru
俄罗斯联邦, Perm
А. Lykova
Perm National Research Polytechnic University
Email: ilinih@yandex.ru
俄罗斯联邦, Perm
G. Permyakov
Perm National Research Polytechnic University
Email: ilinih@yandex.ru
俄罗斯联邦, Perm
М. Simonov
Perm National Research Polytechnic University
Email: ilinih@yandex.ru
俄罗斯联邦, Perm
D. Trushnikov
Perm National Research Polytechnic University
Email: ilinih@yandex.ru
俄罗斯联邦, Perm
参考
- Zhao B., Wang H., Qiao N., Wang C., Hu M. Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo // Mater. Sci. Eng. C. — 2017. — V. 70. — P. 832–841. https://doi.org/10.1016/j.msec.2016.07.045
- Blakey-Milner B., Gradl P., Snedden G., Brooks M., Pitot J., Lopez E. et al. Metal additive manufacturing in aerospace // Mater. Des. — 2021. — V. 209. 110008. https://doi.org/10.1016/j.matdes.2021.110008
- Gorelik M. Additive manufacturing in the context of structural integrity // Int. J Fatigue. 2017. V. 94. Part 2. P. 168–177. https://doi.org/10.1016/j.ijfatigue.2016.07.005
- Manzhirov A.V., Parshin D.A. Influence of the erection regime on the stress state of a viscoelastic arched structure erected by an additive technology under the force of gravity // Mech. Solids. 2015. V. 50. P. 657–675. https://doi.org/10.3103/S0025654415060072
- Manzhirov A.V., Parshin D.A. Application of prestressed structural elements in the erection of heavy viscoelastic arched structures with the use of an additive technology // Mech. Solids. 2016. V. 51. P. 692–700. https://doi.org/10.3103/S0025654416060091
- Peskova A.V., Sukhov D.I., Mazalov P.B. Investigation of the formation of the structure of the material of titanium alloy VT6, obtained by the methods of additive technologies // Aviats. Mater. Tekhnol. 2020. № 1. С. 38–44. https://doi.org/10.18577/2071-9140-2020-0-1-38-44
- Butt M.M., Laieghi H., Kvvssn V. et al. Fatigue performance in additively manufactured metal alloys // Prog. Addit. Manuf. 2024. https://doi.org/10.1007/s40964-024-00738-2
- Cheremnov A.M., Gurianov D.A., Chumaevskii A.V., Kobzev A.E., Rubtsov V.E. Regularities of defects and structural inhomogeneities formation during friction stir processing of titanium alloy products obtained by wire-feed electron beam additive manufacturing // Bulletin of the Siberian State Industrial University. 2024. V. 1. № 47. P. 58–68. https://doi.org/10.57070/2304-4497-2024-1(47)-58-68
- Akulova S.N., Myshkina A.V., Varushkin S.V., Neulybin S.D., Krivonosova E.A., Shchitsyn Yu.D., Olshanskaya T.V. About influence of plasma surface schemes on the formation of the structure and properties of titanium alloy // Bulletin PNRPU. Mech. Eng. Mater. Sci. 2021. V. 23. № 3. P. 75–83. https://doi.org/10.15593/2224-9877/2021.3.09
- Bayandin Yu.V., Dudin D.S., Ilyinykh A.V., Permyakov G.L., Chudinov V.V., Keller I.E., Trushnikov D.N. Strength and ductility characteristics of metal alloys and stainless steels created by wire-arc surfacing in a wide range of strain rates // PNRPU Mechanics Bulletin. 2023. № 1. P. 33–45. https://doi.org/10.15593/perm.mech/2023.1.04
- Panin P.V., Lukina E.A., Naprienk S.A., Alekseev E.B. Effect of heat treatment on the structure and properties of titanium aluminide alloy Ti-Al-V-Nb-Cr-Gd produced by selective // Physical Mesomechanics. 2023. V. 26. № 6. P. 61–74. https://doi.org/10.55652/1683-805X_2023_26_6_61
- Liu H., Yu H., Guo C., Chen X., Zhong S., Zhou L. et al. Review on fatigue of additive manufactured metallic alloys: microstructure, performance, enhancement, and assessment methods // Adv. Mater. 2023. V. 36. 2306570. https://doi.org/10.1002/adma.202306570
- Volkov I.A., Korotkikh Y.G. Modeling of fatigue life of materials and structures under low-cycle loading // Mech. Solids. 2014. V. 49. № 3. P. 290–301. https://doi.org/10.3103/S0025654414030054
- Zhang P., He A.N., Liu F., Zhang K., Jiang J., Zhang D.Z. Evaluation of Low Cycle Fatigue Performance of Selective Laser Melted Titanium Alloy Ti–6Al–4V // Metals. 2019. V. 9. 1041. https://doi.org/10.3390/met9101041
- Bressan S., Ogawa F., Itoh T., Berto F. Low cycle fatigue behavior of additively manufactured Ti-6Al-4V under non-proportional and proportional loading // Frattura ed Integrità Strutturale. 2019. V. 48. P. 18–25. https://doi.org/10.3221/IGF-ESIS.48.03
- Fatemi A., Molaei R., Sharifimehr S., Shamsaei N., Phan N. Torsional fatigue behavior of wrought and additive manufactured Ti-6Al-4V by powder bed fusion including surface finish effect // Int. J. Fatigue. 2017. V. 99. P. 187–201. https://doi.org/10.1016/j.ijfatigue.2017.03.002
- Cao F., Zhang T., Ryder M.A. et al. A Review of the Fatigue Properties of Additively Manufactured Ti-6Al-4V // JOM. 2018. V. 70. P. 349–357. https://doi.org/10.1007/s11837-017-2728-5
- Hassanifard S., Adibeig M.R., Hashemi S.M. Determining strain-based fatigue parameters of additively manufactured Ti–6Al–4V: effects of process parameters and loading conditions // Int. J. Adv. Manuf. Technol. 2022. V. 121. P. 8051–8063. https://doi.org/10.1007/s00170-022-09907-5
- Rehmer B., Bayram F., Ávila Calderón L.A. et al. Elastic modulus data for additively and conventionally manufactured variants of Ti-6Al-4V, IN718 and AISI 316 L // Sci. Data. 2023. V. 10. 474. https://doi.org/10.1038/s41597-023-02387-6
- Qian M., Xu W., Brandt M. et al. Additive manufacturing and postprocessing of Ti-6Al-4V for superior mechanical properties // MRS Bulletin. 2016. V. 41. P. 775–784. https://doi.org/10.1557/mrs.2016.215
- Kolubaev E.A., Rubtsov V.E., Chumaevsky A.V., Astafurova E.G. Scientific approaches to micro-, mesoand macrostructural design of bulk metallic and polymetallic materials by wire-feed electron-beam additive manufacturing // Physical Mesomechanics. 2022. V. 25. № 4. P. 5–18. https://doi.org/10.55652/1683-805X_2022_25_4_5
- Gou J., Wang Z., Hu S., Shen J., Liu Z, Yang C. et al. Effect of cold metal transfer mode on the microstructure and machinability of Ti–6Al–4V alloy fabricated by wire and arc additive manufacturing in ultra-precision machining // J. Mater. Res. Technol. 2022. V. 21. P. 1581–1594. https://doi.org/10.1016/j.jmrt.2022.10.011
- Mohd Mansor M.S., Raja S., Yusof F., Muhamad M.R., Manurung Y.H., Adenan M.S. et al. Integrated approach to wire arc additive manufacturing (WAAM) optimization: Harnessing the synergy of process parameters and deposition strategies // J. Mater. Res. Technol. 2024. V. 30. P. 2478–2499. https://doi.org/10.1016/j.jmrt.2024.03.170
- Xizhang Chen, Su C., Wang Y. et al. Cold Metal Transfer (CMT) Based Wire and Arc Additive Manufacture (WAAM) System // J. Surf. Investig. 2018. V. 1. P. 1278–1284. https://doi.org/10.1134/S102745101901004X
- Shchitsyn Y.D., Krivonosova E.A., Trushnikov D.N., Olshanskaya T.V., Kartashov M.F., Kartashov M.F., Neulybin S.D. Use of CMT-Surfacing for Additive Formation of Titanium Alloy Workpieces // Metallurg. 2020. V. 64. № 1–2. P. 67–74. https://doi.org/10.1007/s11015-020-00967-0
- Shchitsyn Y., Kartashev M., Krivonosova E., Olshanskaya T., Trushnikov D. Formation of Structure and Properties of Two-Phase Ti6Al-4V Alloy during Cold Metal Transfer Additive Deposition with Interpass Forging // Materials. 2021. V. 14. № 16. 4415. https://doi.org/10.3390/ma14164415
- Trushnikov D.N., Kartashev M.F., Olshanskaya T.V., Mindibaev M.R., Shchitsyn Y.D., Saucedo-Zendejo F.R. Improving VT6 Titanium-Alloy Components Produced by Multilayer Surfacing // Russ. Eng. Res. 2021. V. 41. № 9. 848850. https://doi.org/10.3103/S1068798X21090264
- Utyaganova V.R., Vorontsov A.V., Eliseev A.A., Osipovich K.S., Kalashnikov K.N., Savchenko N.L. et al. Structure and Phase Composition of Ti–6Al–4V Alloy Obtained by Electron-Beam Additive Manufacturing // Russ. Phys. 2019. V. 62. № 8. P. 1461–1468. https://doi.org/10.1007/s11182-019-01864-z
- Hodinev I.A., Gorbovets M.A., Monin S.A., Ryzhkov P.V. Low-cycle fatigue at elevated temperatures of heat-resistant nickel-based alloy manufactured by selective laser melting // Trudy VIAM. 2022. V. 1. № 107. https://doi.org/10.18577/2307-6046-2022-0-1-97-110
- Ilinykh A.V., Pankov A.M., Lykova A.V., Permyakov G.L. Experimental study of additive titanium alloy TI–6AL–4V cyclic durability under conditions of stress concentration. PNRPU Aerospace Engineering Bulletin. 2023. V. 75. P. 120–132. https://doi.org/10.15593/2224-9982/2023.75.10
补充文件
