CONVERTION OF WAVE MODES UPON REFLECTION AT THE BOUNDARY BETWEEN ELASTIC HALF-SPACES
- 作者: Karakozova A.I.1, Kuznetsov S.V.1,2
-
隶属关系:
- Moscow State University of Civil Engineering
- Institute of Mechanics of the Russian Academy of Sciences named after A.Yu. Ishlinsky
- 期: 编号 4 (2025)
- 页面: 156-170
- 栏目: Articles
- URL: https://rjmseer.com/1026-3519/article/view/690612
- DOI: https://doi.org/10.31857/S1026351925040084
- EDN: https://elibrary.ru/bnqshy
- ID: 690612
如何引用文章
详细
It is known that an incident bulk P-wave propagating in a homogeneous isotropic halfspace, being reflected from the plane boundary, may exhibit a mode conversion into shear S-wave without the formation of reflected P-waves. The mode conversion takes place, when the incident wave hits the boundary at some critical angles, which depend upon Poisson’s ratio. Herein, it is revealed that the Jeffreys solution for the mode conversion angles needs in in corrections, mainly because of spurious roots, appeared at solving a specially constructed eighth-order polynomial for the P-wave reflection coefficient. The developed approach allowed us to construct a bi-cubic polynomial and obtain analytical expressions for its roots, and to find correct values for angles of incidence, at which the mode conversion occurs.
作者简介
A. Karakozova
Moscow State University of Civil Engineering
Email: karioca@mail.ru
Москва, Россия
S. Kuznetsov
Moscow State University of Civil Engineering; Institute of Mechanics of the Russian Academy of Sciences named after A.Yu. Ishlinsky
编辑信件的主要联系方式.
Email: karioca@mail.ru
Москва, Россия; Москва, Россия
参考
- Knott C.G. Reflexion and refraction of elastic waves, with seismological applications // Phil. Mag. 1915. V. 5. № 3. P. 48–64. https://doi.org/10.1785/BSSA0050030163A
- Zoeppritz K. Über Reflexion und Durchgang seismischer Wellen durch Unstetigkeitsflächen // Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse. 1919. VIIb. P. 66–84.
- Aki K., Richards P.G. Quantitative Seismology: Theory and Methods. Vol. 1. San Francisco: Freeman Co. 1980. 557 p.
- Gurtin M.E. The Linear Theory of Elasticity. In: Truesdell C. (eds.) Linear Theories of Elasticity and Thermoelasticity. Berlin, Heidelberg: Springer. 1972. 296 p.
- Ben-Menahem A., Singh S.J. Seismic Waves and Sources. Berlin: Springer-Verlag. 1981. 1102 p.
- Miklowitz J. Wave Propagation in Solids. N.Y.: ASME. 1969. 183 p.
- Burridge R., Lapwood E.R., Knopoff L. First motions from seismic sources near a free surface // Bull. Seism. Soc. Am. 1964. № 54. P. 1889–1913. https://doi.org/10.1785/BSSA05406A1889
- Cagniard L. Reflection and Refraction of Progressive Seismic Waves. // Physics today. 1963. V. 16. № 2. P. 64. https://doi.org/10.1063/1.3050759
- Dragoni M., Gasperini M. On the localization of seismic events // La Rivista del Nuovo Cimento (1978–1999). 1982. № 5. P. 1–28. https://doi.org/10.1007/BF02740882
- Cerveny V. et al. Theory of seismic head waves // Am. J. Phys. 1973. V. 41. № 5. P. 755–757. https://doi.org/10.1119/1.1987374
- Cerveny V., Ravindra R. Theory of Seismic Head Waves. Toronto: Univ. Toronto Press. 1971. 312 p. https://doi.org/10.3138/9781442652668
- Datta S., Bhowmick A.N. Head waves in two-dimensional seismic models // Geophys. Prospect. 1969. V. 17. № 4. P. 419–432. https://doi.org/10.1111/j.1365-2478.1969.tb01987.x
- Ferrand A. et al. Modelling of waves propagation on irregular surfaces using ray tracing and GTD approaches: Application to head waves simulation in TOFD inspections for NDT // J. Phys. Conf. Ser. 2014. V. 498. № 1. P. 012011. https://doi.org/10.1088/1742-6596/498/1/012011
- Hojjati M.H., Honarvar H. An investigation of the relationship between subsurface and head waves by finite element modeling // NDT & E. 2016. № 31. P. 319–330. https://doi.org/10.1080/10589759.2015.1066786
- Levin F.K., Ingram J.D. Head waves from a bed of finite thickness // Geophys. 1962. № 27. P. 753–765. https://doi.org/10.1190/1.1439096
- Nakamura Y. Multi-reflected head waves in a single-layered medium // Geophys. 1966. № 31. P. 927–939. https://doi.org/10.1190/1.1439824
- Jeffreys H. The reflexion and refraction of elastic waves // Roy. Astro. Soc. Mon. Nat. Geophys. Suppl. 1926. № 1. P. 321–334. https://doi.org/10.1111/j.1365-246X.1926.tb05380.x
- Arenberg D.L. Ultrasonic solid delay lines // J. Acoust. Soc. Am. 1948. V. 20. № 1. P. 1–26. https://doi.org/10.1121/1.1906343
- Kolsky H. Stress waves in solids // J. Sound Vibr. 1964. № 1. P. 88–110. https://doi.org/10.1016/0022-460X(64)90008-2
- Kuhn G.J., Lutsch A. Elastic wave mode conversion at a solid-solid boundary with transverse slip // J. Acoust. Soc. Am. 1961. № 33. P. 949–954. https://doi.org/10.1121/1.1908861
- Macelwane J.B., Sohon F.W. Introduction to Theoretical Seismology: Geodynamics. N.Y.: Wiley. 1932. 366 p. https://doi.org/10.1190/1.1439471
- Chai Y., Yang X., Li Y. Full mode-converting transmission between longitudinal and bending waves in plates and beams // J. Sound Vibr. 2023. № 564. P. 117890. https://doi.org/10.1016/j.jsv.2023.117890
- Ilyashenko A.V. et al. Theoretical aspects of applying Love and SH-waves to nondestructive testing of stratified media // Russ. J. Nondestruct. Test. 2017. № 53. P. 597–603. https://doi.org/10.1134/S1061830917090078
- Li S. et al. Explicit/implicit multi-time step co-simulation in unbounded medium with Rayleigh damping and application for wave barrier // Eur. J. Env. Civil Eng. 2020. № 24. P. 2400–2421. https://doi.org/10.1080/19648189.2018.1506826
- Lee J. et al. Perfect transmission of elastic waves obliquely incident at solid–solid interfaces // Extreme Mech. Lett. 2022. № 51. P. 101606. https://doi.org/10.1016/j.eml.2022.101606
- Lee W. et al. Polarization-independent full mode-converting elastic metasurfaces // Int. J. Mech. Sci. 2024. № 266. P. 108975. https://doi.org/10.1016/j.ijmecsci.2024.108975
- Terentjeva E.O. et al. Planar internal Lamb problem: Waves in the epicentral zone of a vertical power source // Acoust. Phys. 2015. V. 61. № 3. P. 356–367. https://doi.org/10.1134/S1063771015030112
- Su X., Lu Zh., Norris A. Elastic metasurfaces for splitting SV-and P-waves in elastic solids // J. Appl. Phys. 2018. V. 123. № 9. P. 091701. https://doi.org/10.1063/1.5007731
- Xie K., Wang Y. & Fu T. Dynamic response of axially functionally graded beam with longitudinal–transverse coupling effect // Aerospace Sci. Technol. 2019. №85. P. 85–95. https://doi.org/10.1016/j.ast.2018.12.004
- Zhu R., Liu X.N. & Huang G.L. Study of anomalous wave propagation and reflection in semi-infinite elastic metamaterials // Wave Motion. 2015. №55. P. 73–83. https://doi.org/10.1016/j.wavemoti.2014.12.007
- Hansen S.C., Cally P.S., Donea A.-C. On mode conversion, reflection, and transmission of magnetoacoustic waves from above in an isothermal stratified atmosphere // Mon. Not. Roy. Astron. Soc. 2016. № 456. P. 1826–1836. https://doi.org/10.1093/mnras/stv2770
- Kuznetsov S.V. “Forbidden” planes for Rayleigh waves // Quart. Appl. Math. 2002. № 60. P. 87–97. https://doi.org/10.1090/qam/1878260
- Kuznetsov S.V. Love waves in stratified monoclinic media // Quart. Appl. Math. 2004. № 62. P. 749–766. https://doi.org/10.1090/qam/2104272
- Kuznetsov S.V. Love waves in layered anisotropic media // J. Appl. Math. Mech. 2006. № 70. P. 116–127. https://doi.org/10.1016/j.jappmathmech.2006.03.004
- Riedel M., Theilen F. AVO investigation of shallow marine sediments // Geophys. Prosp. 2001. № 49. P. 198–212. https://doi.org/10.1046/j.1365-2478.2001.00246.x
- De Ponti J. et al. Selective mode conversion and rainbow trapping via graded elastic waveguides // Phys. Rev. Appl., 2021. № 16. P. 034028. https://doi.org/10.1103/PhysRevApplied.16.034028
- Kaplunov J., Prikazchikov D., Prikazchikova L. & Sergushova O. The lowest vibration spectra of multi-component structures with contrast material properties // J. Sound Vibr. 2019. № 445. P. 132–147. https://doi.org/10.1016/j.jsv.2019.01.013
- Kaplunov J., Prikazchikova L. & Alkinidri M. Antiplane shear of an asymmetric sandwich plate // Continuum Mech. Thermodyn., 2021. V. 33. № 4. P. 1247–1262. https://doi.org/10.1007/s00161-021-00969-6
- Liu D., Peng P. Complete mode conversion of elastic waves by utilizing hexapole resonances in a double-scatterers structure // EPL. 2024. № 146. P. 12001. https://doi.org/10.1209/0295-5075/ad2ba5
- Kuznetsov S.V. Closed form analytical solution for dispersion of Lamb waves in FG plates // Wave Motion. 2019. № 84. P. 1–7. https://doi.org/10.1016/j.wavemoti.2018.09.018
- Li S. et al. Hybrid asynchronous absorbing layers based on Kosloff damping for seismic wave propagation in unbounded domains // Comp. Geotech. 2019. № 109. P. 69–81. https://doi.org/10.1016/j.compgeo.2019.01.019
- Li S. et al. Benchmark for three-dimensional explicit asynchronous absorbing layers for ground wave propagation and wave barriers // Comp. Geotech. 2021. № 131. P. 103808. https://doi.org/10.1016/j.compgeo.2020.103808
- Dudchenko A.V. et al. Vertical wave barriers for vibration reduction // Arch. Appl. Mech. 2021. № 91. P. 257–276. https://doi.org/10.1007/s00419-020-01768-2
- Tancock S., Arabul E., Dahnoun N. A review of new time-to-digital conversion techniques // IEEE Trans. Instr. Measur. 2019. № 68. P. 3406–3417. https://doi.org/10.1109/TIM.2019.2936717
补充文件
