Evaluation of the component composition and thickness of the modified layer of tungsten and tantalum carbides during stationary sputtering by helium ions bombardment
- Authors: Manukhin V.V.1
- 
							Affiliations: 
							- National Research University “MPEI”
 
- Issue: No 9 (2024)
- Pages: 101-105
- Section: Articles
- URL: https://rjmseer.com/1028-0960/article/view/664754
- DOI: https://doi.org/10.31857/S1028096024090133
- EDN: https://elibrary.ru/EHOQAG
- ID: 664754
Cite item
Abstract
A method is proposed for calculating the component composition and thickness of a layer of two-component targets changed as a result of prolonged (stoichiometric) sputtering when irradiated with light ions. The method is based on a previously tested model of sputtering inhomogeneous two-component materials with light ions. In the case of stationary sputtering of tungsten and tantalum carbides with helium ions, the results of calculations of the component composition and thickness of the modified layer are presented in comparison with experimental data.
Full Text
 
												
	                        About the authors
V. V. Manukhin
National Research University “MPEI”
							Author for correspondence.
							Email: manukhinvv@mpei.ru
				                					                																			                												                	Russian Federation, 							Moscow, 111250						
References
- Wiederish H. // Surface Modification and Alloying. N.Y: Springer, 1983. P. 261.
- Betz G., Wehner G.K. // Sputtering by Particle Bombardment II. / Ed. Behrisch R. Berlin–Heidelberg: Springer–Verlag, 1983. P. 11.
- Andersen H.H. // Ion Implantation and Beam Processing / Ed. Williams J.S., Poate J.M. Sydney: Academic, 1984. P. 128.
- Sigmund P., Oliva A. // Nucl. Instrum. Methods Phys. Res. B. 1993. V. 82. P. 242.
- Seah M.P., Nunney T.S. // J. Phys. D. 2010. V. 43. № 25. P. 253001. https://doi.org/10.1088/0022-3727/43/25/253001
- Lian S., Yang H., Terblans J.J., Swart H.C., Wang J., Xu C. // Thin Solid Films. 2021. V. 721. P. 138545. https://doi.org/10.1016/j.tsf.2021.138545
- Sukenobu S., Gomay Y. // J. Nucl. Sci. Technol. 1984. V. 21. № 5. P. 366. https://doi.org/10.1080/18811248.1984.9731057
- Kelly R., Oliva A. // Nucl. Instrum. Methods Phys. Res. B. 1986. V. 13. P. 283.
- Manukhin V.V. // J. Phys.: Conf. Ser. 2020. V. 1683. P. 032002. https://doi.org/10.1088/1742-6596/1683/3/032002
- Manukhin V.V. // J. Phys.: Conf. Ser. 2022. V. 2388. P. 012009. https://doi.org/10.1088/1742-6596/2388/1/012009
- Sigmund P., Oliva A., Falcone G. // Nucl. Instrum. Methods. 1982. V. 194. P. 541.
- Sigmund P., Oliva A. // Nucl. Instrum. Methods Phys. Res. B. 1993. V. 82. P. 242.
- Galkute L., Pranevičius L., Zubauskas G. // Nucl. Instrum. Methods Phys. Res. B. 1987. V. 21. P. 46.
- Манухин В.В. // Журнал технической физики. 2023. Т. 93. Вып. 6. С. 13. https://dio.org./10.21883/JTF.2023.06.55610.52-23
- Patterson W.L., Shirn G.A. // J. Vacuum Sci. Technol. 1967. V. 4. P. 343.
- Falcone G., Sigmund P. // Appl. Phys. 1981. V. 25. P. 307.
- Vicanek M., Jimenez-Rodriguez J.J., Sigmund P. // Nucl. Instrum. Methods Phys. Res. B. 1989. V. 36. P. 124.
- Eckstein W. Computer Simulation of Ion–Solid Interaction. Berlin–Heidelberg: Springer–Verlag, 1991. 296 p.
- Biersack J.P. // Fusion Technol. 1984. V. 6. P. 475.
- Chou P.S., Ghoniem N.M. // J. Nucl. Mater. 1986. V. 141–143. P. 216.
- Roth J., Bohdansky J., Martinelli A.P. // Radiat. Effects. 1980. V. 48. P. 213.
- Varga P., Taglauer E. // J. Nucl. Mater. 1982. V. 111–112. P. 726.
- Taglauer E., Heiland W. // Proc. Symp. on Sputtering. Wien, 1980. P. 423.
- Eckstein W., Biersack J.P. // Appl. Phys. A. 1985. V. 37. P. 95.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted





