Kinetics of Hydrogen Evolution during Amminborane Hydrolysis with Cobalt-Based Catalysts
- Autores: Dyankova N.Y.1, Lapin N.V.1, Grinko V.V.1, Vyatkin A.F.1
- 
							Afiliações: 
							- Institute for Problems of Technology of Microelectronics and High-Purity Materials RAS (IPTM RAS)
 
- Edição: Nº 9 (2023)
- Páginas: 65-73
- Seção: Articles
- URL: https://rjmseer.com/1028-0960/article/view/664508
- DOI: https://doi.org/10.31857/S1028096023090042
- EDN: https://elibrary.ru/ZKYGWX
- ID: 664508
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The kinetics of hydrogen evolution during the hydrolysis reaction of aqueous solutions of amminborane with cobalt-based catalysts deposited on various substrates – Co3O4/ZnO, Co/ZnO, Co3O4/zeolite, Co/zeolite, as well as Co(OH)2 powder, was studied. In each case, the reaction order, the rate constants and apparent activation energy of the reaction, and the rate of hydrogen evolution during hydrolysis in the temperature range 35–80°C were determined. In all cases, an amminborane solution with a concentration of 0.078 M was used. The amount of the active part of the catalysts was determined by the chemical method and was 7.5–10% of the total weight of the catalyst. For low-temperature Co–B and Co(OH)2 catalysts, the kinetic dependences corresponded to the zero or close to zero reaction order. When using the catalysts Co3O4/ZnO, Co/ZnO, Co3O4/zeolite, Co/zeolite, the first order of the reaction was observed. The maximum rate of hydrogen evolution at 80°C was 3125 mL H2 · (g-cat–1) · min–1 for Co/ZnO catalyst (turnover frequency TOF = 8.2 min–1) and 3750 mL H2 · (g-cat–1) · min–1 for Co–B catalyst (TOF = 11.7 min–1), respectively. The values of the apparent activation energy of the reaction of catalytic hydrolysis of amminborane were calculated for the catalysts: Co3O4/ZnO – 26.0, LT Co–B – 44.8, Co(OH)2 black – 43.4, Co(OH)2 blue – 47.4 kJ/mol, respectively.
Sobre autores
N. Dyankova
Institute for Problems of Technology of Microelectronics and High-Purity Materials RAS (IPTM RAS)
														Email: grinko@iptm.ru
				                					                																			                												                								Russia, 142432, Moscow Region, 
Chernogolovka						
N. Lapin
Institute for Problems of Technology of Microelectronics and High-Purity Materials RAS (IPTM RAS)
														Email: grinko@iptm.ru
				                					                																			                												                								Russia, 142432, Moscow Region, 
Chernogolovka						
V. Grinko
Institute for Problems of Technology of Microelectronics and High-Purity Materials RAS (IPTM RAS)
							Autor responsável pela correspondência
							Email: grinko@iptm.ru
				                					                																			                												                								Russia, 142432, Moscow Region, 
Chernogolovka						
A. Vyatkin
Institute for Problems of Technology of Microelectronics and High-Purity Materials RAS (IPTM RAS)
														Email: grinko@iptm.ru
				                					                																			                												                								Russia, 142432, Moscow Region, 
Chernogolovka						
Bibliografia
- Akbayrak S., Ozkar S. // Int. J. Hydrogen En. 2018. V. 43. № 40. P. 18592.https://doi.org/10.1016/j.ijhydene.2018.02.190
- Demirci U.B. // Int. J. Hydrogen En. 2017. V. 42. № 15. P. 9978.https://doi.org/10.1016/j.ijhydene.2017.01.154
- Figen A.K., Piskin M.B., Coskuner B., Imamoglu V. // Int. J. Hydrogen En. 2013. V. 38. № 36. P. 16 215.https://doi.org/10.1016/j.ijhydene.2013.10.033
- Sreedhar I., Kamani K.M., Kamani B.M., Reddy B.M., Venugopal A. // Renewable and Sustainable En. Rev. 2018. V. 91. P. 838.https://doi.org/10.1016/j.rser.2018.04.028
- Simagina V.I., Vernikovskaya N.V., Komova O.V., Kayl N.L., Netskina O.V., Odegova G.V. // Chem. Eng. J. 2017. V. 329. P. 156. https://doi.org/10.1016/j.cej.2017.05.005
- Liu M., Zhou L., Luo X., Wan C., Xu L. // Catalysts. 2020. V. 10. P. 788.https://doi.org/10.3390/catal10070788
- Wu H., Cheng Y., Fan Y., Lu X., Li L., Liu B., Li B., Lu S. // Int. J. Hydrogen En. 2020. V. 45. № 55. P. 30325. https://doi.org/10.1016/j.ijhydene.2020.08.131
- Alpaydin C.Y., Gulbay S.K., Colpan C.O. // Int. J. Hydrogen En. 2020. V. 45. № 5. P. 3414.https://doi.org/10.1016/j.ijhydene.2019.02.181
- Demirci U.B., Miele P. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 6872. https://doi.org/10.1039/c4cp00250d
- Patel N., Miotello A. // Int. J. Hydrogen En. 2015. V. 40. № 3. P. 1429. https://doi.org/10.1016/j.ijhydene.2014.11.052
- Lu D., Liao J., Zhong S., Leng Y., Ji S., Wang H., Wang R., Li H. // Int. J. Hydrogen En. 2018. V. 43. № 11. P. 5541. https://doi.org/10.1016/j.ijhydene.2018.01.129
- Gorlova A.M., Kayl N.L., Komova O.V., Netskina O.V., Ozerova A.M., Odegova G.V., Bulavchenko O.A., Ishchenko A.V., Simagina V.I. // Renewable En. 2018. V. 121. P. 722. https://doi.org/10.1016/j.renene.2018.01.089
- Kinsiz B.N., Filiz B.C., Depren S.K., Figen A.K. // Appl. Mater. Today. 2021. V. 22. P. 100952. https://doi.org/10.1016/j.apmt.2021.100952
- Лапин Н.В., Дьянкова Н.Я. // Неорган. материалы. 2013. Т. 49. № 10. С. 1050. https://doi.org/10.7868/S0002337X13100060
- Onat E., Sahin O., Izgi M.S., Horoz S. // J. Mater. Sci: Mater. Electron. 2021. V. 32. P. 27251. https://doi.org/10.1007/s10854-021-07094-9
- Xu S.H., Wang J.F., Valerio A., Zhang W.Y., Sun J.L., He D.N. // Inor. Chem. Frontiers. 2021. V. 8. № 1. P. 48. https://doi.org/10.1039/d0qi00659a
- Zhang H., Gu X.J., Song J. // Int. J. Hydrogen En. 2020. V. 45. № 41. P. 21273. https://doi.org/10.1016/j.ijhydene.2020.05.178
- Yang G., Guan S.Y., Mehdi S., Fan Y.P., Liu B.Z., Li B.J. // Green En. Environ. 2021. V. 6. № 2. P. 236.https://doi.org/10.1016/j.gee.2020.03.012
- Herron R., Marchant C., Sullivan J.A. // Catalysis Commun. 2018. V. 107. P. 14. https://doi.org/10.1016/j.catcom.2018.01.008
- Wang W.J., Liang M.W., Jiang Y., Liao C.Y., Long Q., Lai X.F., Liao L. // Mater. Lett. 2021. V. 293. P. 129702.https://doi.org/10.1016/j.matlet.2021.129702
- Fang M.H., Wu S.Y., Chang Y.H., Narwane M., Chen B.H., Liu W.L., Kurniawan D., Chiang W.H., Lin C.H., Chuang Y.C., Hsu I.J., Chen H.T., Lu T.T. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 40. P. 47465. https://doi.org/10.1021/acsami.1c11521
- Zhang J., Duan Y., Zhu Y., Wang Y., Yao H., Mi G. // Mater. Chem. Phys. 2017. V. 201. P. 297. https://doi.org/10.1016/j.matchemphys.2017.08.040
- Wang Y., Meng W., Wang D., Li G., Wu S., Cao Z., Zhang K., Wu C., Liu S. // Int. J. Hydrogen En. 2017. V. 42. № 52. P. 30718. https://doi.org/10.1016/j.ijhydene.2017.10.131
- Jiang R., Wang W.Z., Zheng X., Li Q.A., Xu Z.M., Peng J. // Int. J. Hydrogen En. 2021. V. 46. № 7. P. 5345. https://doi.org/10.1016/j.ijhydene.2020.11.086
- Wu H., Cheng Y.J., Wang B.Y., Wang Y., Wu M., Li W.D., Liu B.Z., Lu S.Y. // J. En. Chem. 2021. V. 57. P. 198. https://doi.org/10.1016/j.jechem.2020.08.051
- Wang C., Wang Z.L., Wang H.L., Chi Y., Wang M.G., Cheng D.W., Zhang J.J., Wu C., Zhao Z.K. // Int. J. Hydrogen En. 2021. V. 46. № 13. P. 9030. https://doi.org/10.1016/j.ijhydene.2021.01.026
- Chen J., Long B., Hu H.B., Zhong Z.Q., Lawa I., Zhang F., Wang L.W., Yuan Z.H. // Int. J. Hydrogen En. 2022. V. 47. № 5. P. 2976.https://doi.org/10.1016/j.ijhydene.2021.10.255
- Hu H.B., Long B., Jiang Y.F., Sun S.C., Lawan I., Zhou W.M., Zhang M.X., Wang L.W., Zhang F., Yuan Z.H. // Chem. Res. Chin. Univer. 2020. V. 36. № 6. P. 1209. https://doi.org/10.1007/s40242-020-0209-9
- Ozerova A.M., Bulavchenko O.A., Komova O.V., Netskina O.V., Zaikovskii V.I., Odegova G.V., Simagina V.I. // Kinetics Catalysis. 2012. V. 53. № 4. P. 511. https://doi.org/10.1134/S0023158412040088
- Netskina O.V., Ozerova A.M., Komova O.V., Kochubey D.I., Kanazhevskiy V.V., Ishchenko A.V., Simagina V.I. // Top Catal. 2016. V. 59. P. 1431.https://doi.org/10.1007/s11244-016-0664-1
- Simagina V.I., Ozerova A.M., Komova O.V., Netskina O.V. // Catalysts. 2021. V. 11. № 2. P. 268.https://doi.org/10.3390/catal11020268
- Карякин Ю.В., Ангелов И.И. // Чистые химические вещества. М.: Химия, 1974. С. 207.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 







