Theoretical study of electron exchange under grazing scattering on thin metal films
- Autores: Gainullin I.K.1
- 
							Afiliações: 
							- Lomonosov Moscow State University
 
- Edição: Nº 10 (2024)
- Páginas: 87-93
- Seção: Articles
- URL: https://rjmseer.com/1028-0960/article/view/664737
- DOI: https://doi.org/10.31857/S1028096024100116
- EDN: https://elibrary.ru/SGYOKN
- ID: 664737
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Electron exchange during grazing scattering of hydrogen ions on thin metal films is considered. The main characteristic being studied is the yield fraction, i.e. the probability of the formation of a certain charge state of a scattered particle (in the case under consideration, H–) as a function of the velocity component parallel to the surface of the sample. Based on an analysis of the electron distribution in the space of wave vectors, using the generally accepted model of displacement of Fermi spheres, it was shown that the dependence of the probability of the formation of a negative hydrogen ion on the parallel velocity component should decrease monotonically.
Texto integral
 
												
	                        Sobre autores
I. Gainullin
Lomonosov Moscow State University
							Autor responsável pela correspondência
							Email: ivan.gainullin@physics.msu.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Martynenko Yu. V. // Sov. Phys. Solid State. 1964. V. 3529. P. 2003.
- Yurasova V.E., Chernysh V.S., Kuvakin M.V., Shelyakin L.B. // JETP Lett. 1975. V. 21. № 3. P. 79.
- Xiao Y., Shi Y., Liu P., Zhu Y., Gao L., Guo Y., Chen L., Chen X., Esaulov V. // Nucl. Instrum. Methods Phys. Res. B. 2019. V. 450. P. 73. http://doi.org/10.1016/j.nimb.2018.11.022
- Mamedov N.V., Mamedov I.M. // Bull. Russ. Acad. Sci.: Phys. 2020. V. 84. P. 713. http://doi.org/10.3103/S1062873820060155
- Balakshin Y.V., Kozhemiako A.V., Evseev A.P., Minnebaev D.K., Elsehly E.M. // Moscow University Phys. Bull. 2020. V. 75. Р. 218. http://doi.org/10.3103/S0027134920030030
- Shemukhin A.A., Smirnov A.M., Evseev A.P., Vorobyeva E.A., Kozhemiako A.V., Minnebaev D.K., Balakshin Y.V., Nazarov A.V., Chernysh V.S. // Moscow University Phys. Bull. 2020. V. 75. P. 133. http://doi.org/10.3103/S0027134920020113
- Tolstogouzov A., Daolio S., Pagura C. // Surf. Sci. 1999. V. 441. P. 213. http://doi.org/10.1016/S0039-6028(99)00881-X
- Elovikov S.S., Zykova E.Yu., Mosunov A.S. et al. // Bull. Russ. Acad. Sci. Phys. 2002. V. 66. P. 558.
- Bogomolova L.D., Borisov A.M., Kurnaev V.A., Mashkova E.S. // Nucl. Instrum. Methods Phys. Res. B. 2003. V. 212. P. 164. http://doi.org/10.1016/S0168-583X(03)01730-0
- Zinoviev A.N., Babenko P.Y., Meluzova D.S., Shergin A.P. // JETP Lett. 2018. V. 108. P. 633. http://doi.org/10.1134/S0021364018210154
- Los J., Geerlings J.J.C. // Phys. Rep. 1990. V. 190. P. 133.
- Karaseov P.A., Karabeshkin K.V., Titov A.I., Shilov V.B., Ermolaeva G.M., Maslov V.G., Orlova A.O. // Semiconductors. 2014. V. 48. № 4. P. 446. http://doi.org/10.1134/S1063782614040125
- Andrianova N.N., Borisov A.M., Mashkova E.S., Shulga V.I. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2016. V. 10. P. 412. http://doi.org/10.1134/S1027451016020233
- Zykova E.Y., Khaidarov A.A., Ivanenko I.P., Gainullin I.K. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2012. V. 6. P. 877. http://doi.org/10.1134/S102745101211016X
- Gainullin I.K. // Surf. Sci. 2019. V. 681. P. 158. http://doi.org/10.1016/j.susc.2018.11.003
- Gainullin I.K. // Physics-Uspekhi. 2020. V. 63. № 9. http://doi.org/10.3367/UFNe.2019.11.038691
- Gainullin I. K // Surf. Sci. 2018. V. 677. P. 324. http://doi.org/10.1016/j.susc.2018.08.007
- Winter H. // Phys. Rep. 2002. V. 367. P. 387. http://doi.org/10.1016/S0370-1573(02)00010-8
- Liu P., Gainullin I.K., Esaulov V.A. et al. // Phys. Rev. A. 2020. V. 101. P. 032706. http://doi.org/10.1103/PhysRevA.101.032706
- Shi Y., Yin L., Ding B. et al. // Phys. Rev. A. 2022. V. 105. P. 042807. http://doi.org/10.1103/PhysRevA.105.042807
- Van Wunnik J.N.M., Brako R., Makoshi K., Newns D.M. // Surf. Sci. 1983. V. 126. № 1–3. P. 618.
- Borisov A.G., Winter H. // Nucl. Instrum. Methods Phys. Res. B. 1996. V. 115. № 1–4. P. 1425. http://doi.org/10.1016/0168-583X(96)01518-2
- Усман Е.Ю., Гайнуллин И.К., Уразгильдин И.Ф. // Вестн. Моск. ун-та. 2005. № 2. С. 23.
- Amanbaev E.R., Shestakov D.K., Gainullin I.K. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2009. V. 3. P. 865. http://doi.org/10.1134/S1027451009060032
- Magunov A.A., Shestakov D.K., Gainullin I.K., Urazgil’din I.F. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2008. V. 2. P. 764. http://doi.org/10.1134/S1027451008050170
- Shestakov D.K., Polivnikova T.Yu., Gainullin I.K., Urazgildin I.F. // Nucl. Instrum. Methods Phys. Res. B. 2009. V. 267. P. 2596. http://doi.org/10.1016/j.nimb.2009.05.043
- Gainullin I.K., Urazgildin I.F. // Phys. Rev. B. 2006. V. 74. P. 205403. http://doi.org/10.1103/PhysRevB.74.205403
- Souda R., Ayzawa T., Hayami W., Otani S., Ishizawa Y. // Phys. Rev. B. 1990. V. 42. P. 7761. http://doi.org/10.1103/PhysRevB.42.7761
- Amanbaev E.R., Gainullin I.K., Zykova E.Yu., Urazgildin I.F. // Thin Solid Films. 2011. V. 519. P. 4737. http://doi.org/10.1016/j.tsf.2011.01.026
- Gainullin I.K. // Phys. Rev. A. 2019. V. 100. P. 032712. http://doi.org/10.1103/PhysRevA.100.032712
- Canário , Borisov , Gauyacq , Esaulov // Phys. Rev. B. 2005. V. 71. № 12. P. 121401. http://doi.org/10.1103/PhysRevB.71.121401
- Gainullin I.K., Usman E.Yu., Song Y.W., Urazgil’din I.F. // Vacuum. 2003. V. 72. P. 263. http://doi.org/10.1016/j.vacuum.2003.07.001
- Usman E.Yu., Urazgil’din I.F., BorisovA.G., Gauyacq J.P. // Phys. Rev. B. 2001. V. 64. P. 205405. http://doi.org/10.1103/PhysRevB.64.205405
- Gainullin I.K., Usman E.Y., Urazgil’din I.F. // Nucl. Instrum. Methods Phys. Res. B. 2005. V. 232. P. 22. http://doi.org/10.1016/j.nimb.2005.03.019
- Moskalenko S.S., Gainullin I.K. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2023. V. 17. P. 299. http://doi.org/10.1134/S1027451022060155
- Obreshkov B., Thumm U. // Phys. Rev. A. 2013. V. 87. P. 022903. http://doi.org/10.1103/PhysRevA.87.022903
- Melkozerova J.A., Gainullin I.K. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2023. V. 12. P. 1175. http://doi.org/10.1134/S1027451022060143
- Gao L., Zhu Y., Shi Y., Liu P., Xiao Y., Li G., Liu Y., Esaulov V.A., Chen X., Chen L., Guo Y. // Phys. Rev. A. 2017. V. 96. P. 052705. http://doi.org/10.1103/PhysRevA.96.052705
- Klimov N.E., Gainullin I.K. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2023. V. 17. № 1. P. 72. http://doi.org/10.1134/S1027451023010123
- Shaw J., Zhang Y., Doerr D., Chakraborty H., Monismith D. // Phys. Rev. A. 2019. V. 98. P. 052705. http://doi.org/10.1103/PhysRevA.98.052705
- Shaw J., Monismith D., Zhang Y., Doerr D., Chakraborty H.S. // Atoms. 2020. V. 7. P. 89. http://doi.org/10.3390/atoms7030089
- Iglesias-García A., Romero M.A., García E.A., Goldberg E.C. // Phys. Rev. B. 2020. V. 102. P. 115406. http://doi.org/10.1103/PhysRevB.102.115406
- Gainullin I.K., Sonkin M.A. // Phys. Rev. A. 2015. V. 92. P. 022710. http://doi.org/10.1103/PhysRevA.92.022710
- Gainullin I.K. // Moscow University Phys. Bull. 2019. V. 74. P. 585. http://doi.org/10.3103/S0027134919060158
- Gainullin I.K. // Comp. Phys. Commun. 2017. V. 210. P. 72. http://doi.org/10.1016/j.cpc.2016.09.021
- Gainullin I.K., Sonkin M.A. // Comp. Phys. Commun. 2015. V. 188. P. 68. http://doi.org/10.1016/j.cpc.2014.11.005
- Gainullin I.K. // Phys. Rev. A. 2017. V. 95. P. 052705. http://doi.org/10.1103/PhysRevA.95.052705
- Gainullin I.K., Sonkin M.A. // Phys. Rev. A. 2015. V. 92. P. 022710. http://doi.org/10.1103/PhysRevA.92.022710
- Aleksandrov A.F., Gainullin I.K., Sonkin M.A. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2020. V. 14. P. 791. http://doi.org/10.1134/S1027451020040205
- Majorosi S., Czirják A. // Comp. Phys. Comm. 2016. V. 208. P. 9. http://doi.org/10.1016/j.cpc.2016.07.006
- Gainullin I.K., Klavsyuk A.L. // Bull. Russ. Acad. Sci. Phys. 2012. V. 76. P. 542. http://doi.org/10.3103/S1062873812050115
- Fu Y., Zeng J., Yuan J. // Comp. Phys. Commun. 2017. V. 210. P. 181. http://doi.org/10.1016/j.cpc.2016.09.016
- Gainullin I.K., Sonkin M.A. // Math. Models Comput. Simulations. 2019. V. 11. P. 964. http://doi.org/10.1134/S2070048219060048
- Lüdde H.J., Horbatsch M., Kirchner T. // Eur. Phys. 2018. V. 91. P. 99. http://doi.org/10.1140/epjb/e2018-90165-x
- Zhou S.P., Liu A.H., Liu F.C., Wang C.C., Ding D.J. // Chin. Phys. B. 2019. V. 28. P. 083101. http://doi.org/10.1088/1674-1056/28/8/083101
- Liu Q., Liu F., Hou C. // Proc. Comput. Sci. 2020. V. 171. P. 312. http://doi.org/10.1016/j.procs.2020.04.032
- Cohen J.S., Fiorentini G. // Phys. Rev. A. 1986. V. 33. P. 1590.
- Jennings P.J., Jones R.O., Weinert M. // Phys. Rev. B. 1988. V. 37. P. 6113.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 






