Mechanisms of Methyl Group Elimination from Low-k Dielectric Surfaces by Plasma of Various Composition
- Autores: Sycheva A.A.1, Solovykh A.A.1, Voronina E.N.1
- 
							Afiliações: 
							- Lomonosov Moscow State University
 
- Edição: Nº 2 (2025)
- Páginas: 32-45
- Seção: Articles
- URL: https://rjmseer.com/1028-0960/article/view/686771
- DOI: https://doi.org/10.31857/S1028096025020054
- EDN: https://elibrary.ru/EHGQNG
- ID: 686771
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Low-k dielectrics are applied as interlayer isolators between metallic (cuprum) interconnects in very large integrated circuits. Diffusion of Cu atoms can lead to their degradation, and the most efficient way to solve this problem is the fabrication of ultra-thin metal barrier layers. However, this process is complicated by the non-flatness of low-k surface and the presence of hydrophobic CH3-groups preventing the metal deposition. Therefore, before the barrier coating it is necessary to perform preliminary surface functionalization aimed at removing methyl groups. In this work the dynamic density functional theory-based simulation of radical and ion irradiation of low-k surface for plasma of various composition (noble gases, molecular nitrogen and oxygen) was carried out to study the mechanisms of methyl group removal. The results obtained showed the possibility of this process for low-energy range (10–15 eV) of incident particles. In this work the detailed analysis of the calculated trajectories is presented, the interactions of CH3-groups with noble gas atoms (Ne, He) and with more chemically active N and O atoms were compared, the peculiarities of methyl group removal under molecule and molecular ion irradiation were described.
Texto integral
 
												
	                        Sobre autores
A. Sycheva
Lomonosov Moscow State University
														Email: solovykh.aa19@physics.msu.ru
				                					                																			                												                	Rússia, 							Moscow						
A. Solovykh
Lomonosov Moscow State University
							Autor responsável pela correspondência
							Email: solovykh.aa19@physics.msu.ru
				                					                																			                												                	Rússia, 							Moscow						
E. Voronina
Lomonosov Moscow State University
														Email: solovykh.aa19@physics.msu.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Baklanov M.R., Ho P.S., Zschech E. Advanced Interconnects for ULSI Technology. Wiley & Sons, 2012. 596 p.
- Jenkins M., Austin D.Z., Conley J.F., Fan J., de Groot C.H., Jiang L., Fan Ye, Ali R., Ghosh G., Orlowski M. // ECS J. Solid State Sci. Technol. 2019. V. 8. P. 159. https://www.doi.org/10.1149/2.0161910jss
- Volksen W., Miller R.D., Dubois G. // Chem. Rev. 2010. V. 110. P. 56. https://www.doi.org/10.1021/cr9002819
- Baklanov M.R., de Marneffe J.-F., Shamiryan D., Urbanowicz A.M., Shi H., Rakhimova T.V., Huang H., Ho P.S. // J. Appl. Phys. 2013. V. 113. P. 041101. https://www.doi.org/10.1063/1.4765297
- Rakhimova T.V., Lopaev D.V., Mankelevich Yu.A., Kurchikov K.A., Zyryanov S.M., Palov A.P., Proshina O.V., Maslakov K.I., Baklanov M.R. // J. Phys. D. 2015. V. 48. P. 175204. https://www.doi.org/10.1088/0022-3727/48/17/175204
- Braginsky O.V., Kovalev A.S., Lopaev D.V., Malykhin E.M., Mankelevich Yu.A., Rakhimova T.V., Rakhimov A.T., Vasilieva A.N., Zyryanov S.M., Baklanov M.R. // J. Appl. Phys. 2010. V. 108. P. 073303. https://www.doi.org/10.1063/1.3486084
- Yamamoto H., Takeda K., Ishikawa K., Ito M., Sekine M., Hori M., Kaminatsui T., Hayashi H., Sakai I., Ohiwa T. // J. Appl. Phys. 2011. V. 109. P. 084112. https://www.doi.org/10.1063/1.3562161
- Matsunaga N., Okumura H., Jinnai B., Samukawa S. // Jpn. J. Appl. Phys. 2010. V. 49. https://www.doi.org/10.1143/JJAP.49.04DB06
- Kunnen E., Baklanov M.R., Franquet A., Shamiryan D., Rakhimova T.V., Urbanowicz A.M., Struyf H., Boullart W. // J. Vac. Sci. Technol. B. 2010. V. 28. № 3. P. 450. https://www.doi.org/10.1116/1.3372838
- Sycheva A.A., Voronina E.N., Rakhimova T.V., Rakhimov A.T. // Appl. Surf. Sci. 2019. V. 475. P. 1021. https://www.doi.org/10.1016/j.apsusc.2019.01.078
- Xu H., Hu Zh.-J., Qu X.-P., Wan H., Yan Sh.-S., Li M., Chen Sh.-M., Zhao Y.-H., Zhang J., Baklanov M.R. // Appl. Surf. Sci. 2019. V. 498. P. 143887. https://www.doi.org/10.1016/j.apsusc.2019.143887
- Lionti K., Volksen W., Magbitang T., Darnon M., Dubois G. // ECS J. Solid State Sci. Technol. 2014. V. 4. P. 3071. https://www.doi.org/10.1149/2.0081501jss
- Walton S.G., Hernández S.C., Boris D.R., Petrova Tz.B., Petrov G.M. // J. Phys. D: Appl. Phys. 2017. V. 50. P. 354001. https://www.doi.org/10.1088/1361-6463/aa7d12
- Palov A.P., Proshina O.V., Rakhimova T.V., Rakhimov A.T., Voronina E.N. // Plasma Process. Polym. 2021. V. 18. P. 2100007. https://www.doi.org/10.1002/ppap.202100007
- Voronina E.N., Sycheva A.A., Solovykh A.A., Proshina O.V., Rakhimova T.V., Palov A.P., Rakhimov A.T. // J. Vac. Sci. Technol. B. 2022. V. 40. P. 062203. https://www.doi.org/10.1116/6.0002006
- Jensen F. Introduction to Computational Chemistry. Wiley & Sons, 2007. 620. p.
- Кон В., Попл Дж.А. // Усп. физ. наук. 2002. Т. 172. С. 335. https://www.doi.org/10.3367/UFNr.0172.200203d.0335
- Rakhimova T.V., Braginsky O.V., Ivanov V.V., Kovalev A.S., Lopaev D.V., Mankelevich Yu.A. // IEEE Trans. Plasma Sci. 2007. V. 35. P. 1229. https://www.doi.org/10.1109/TPS.2007.905201
- Kovalev A.S., Kurchikov K.A., Proshina O.V., Rakhimova T.V., Vasilieva A.N., Voloshin D.G. // Phys. Plasmas. 2019. V. 26. P. 123501. https://www.doi.org/10.1063/1.5123989
- Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. P. 1758. https://www.doi.org/10.1103/PhysRevB.59.1758
- Perdew J.P., Ruzsinszky A., Tao J. // J. Chem. Phys. 2005. V. 123. P. 062201. https://www.doi.org/10.1063/1.1904565
- Kresse G., Furthmüller J. // Phys. Rev. B. 1996. V. 54. P. 11169. https://www.doi.org/10.1103/PhysRevB.54.11169
- Blöchl P.E. // Phys. Rev. B. 1994. V. 50. P. 17953. https://www.doi.org/10.1103/PhysRevB.50.17953
- Chaudhari M., Du J. // J. Vac. Sci. Technol. A. 2011. V. 29. P. 031303. https://www.doi.org/10.1116/1.3568963
- Rimsza J.M., Kelber J.A., Du J. // J. Phys. D: Appl. Phys. 2014. V. 47. P. 335204. https://www.doi.org/10.1088/0022-3727/47/33/ 335204
- Kazi H., Rimsza J., Du J. // J. Vac. Sci. Technol. A. 2014. V. 32. P. 051301. https://www.doi.org/10.1116/1.4890119
- Соловых А.А., Сычева А.А., Воронина Е.Н. // Письма в ЖТФ. 2022. Т. 48. С. 19. https://www.doi.org/10.21883/PJTF.2022.07.52286. 19085
- Voevodin V.V., Antonov A.S., Nikitenko D.A., Shvets P.A., Sobolev S.I., Sidorov I.Yu., Stefanov K.S., Voevodin V.V., Zhumatiy S.A. // Supercomput. Front. Innovations. 2019. V. 6. P. 4. https://www.doi.org/10.14529/jsfi190201
- Humphrey W., Dalke A., Schulten K. // J. Mol. Graphics. 1996. V. 14. P. 33. https://www.doi.org/10.1016/0263-7855(96)00018-5
- Darwent B. // Nat. Stand. Ref. Data Ser. NSRDS-NBS 31. Nat. Bur. Stand. 1970. P. 52. https://www.doi.org/10.6028/NBS.NSRDS.31
- Соловых А.А., Сычева А.А., Воронина Е.Н. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 2. С. 63. https://www.doi.org/10.1134/S1027451023010391
- Ландау Л.Д., Лифшиц Е.М. Теоретическая физика: Т. 1. Механика. М.: Наука. 1988, 224. с.
- Balucani N. // Chem. Soc. Rev. 2012. V. 41. Iss. 16. P. 5473. https://www.doi.org/10.1039/c2cs35113g
- Voronina E.N., Mankelevich Yu.A., Rakhimova T.V., Lopaev D.V. // J. Vacuum Sci. Technol. A. 2019. V. 37. Iss. 6. P. 061304. https://www.doi.org/10.1116/1.5122655
- Balucani N., Bergeat A., Cartechini L., Volpi G.G., Casavecchia P., Skouteris D., Rosi M. // J. Phys. Chem. A. 2009. V. 113. Iss. 42. P. 11138. https://www.doi.org/10.1021/jp904302g
- Lopaev D.V., Zyryanov S.M., Zotovich A.I., Rakhimova T.V., Mankelevich Yu.A., Voronina E.N. // J. Physics D. Appl. Phys. 2020. V. 53. P. 175203. https://www.doi.org/10.1088/1361-6463/ab6e99
- Tait K.S., Kolb C.E., Baum H.R. // J. Chem. Phys. 1973. V. 59. Iss. 6. P. 3128. https://www.doi.org/10.1063/1.1680454
- Герцберг Г. Спектры и строение двухатомных молекул. Москва: Изд-во иностр. лит. 1949. 404. с.
- Sadeghi N., Foissac C., Supiot P. // J. Phys. D Appl. Phys. 2001. V. 34. P. 1779. https://www.doi.org/10.1088/0022-3727/34/12/304
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 








