Wave-like periodic structures on the silicon surface initiated by irradiation with a focused gallium ion beam

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The processes of microrelief formation on the Si(100) surface under irradiation with a 30 keV Ga+ ion beam and a fluence of D = 1.25 × 1018–2 × 1019 cm–2 at incidence angles θ = 30°–85° was investigated. It was found that in the θ angular range 40°–70° faceted ripples were formed on the Si surface, and at θ = 30° sinusoidal ripples were formed. The experimental dependence of the wavelength of the periodic structure on the irradiation time λ(t) ~ tn, n = 0.33–0.35, was obtained. The average velocities of relief propagation and their direction relative to the direction of incident ions in the cases of θ = 30° and 40° were determined, which were –5.3 ± 0.6 and –6.3 ± 0.6 nm/s, respectively. The results obtained are discussed in detail within the framework of existing models of the formation of ripples on a surface under ion beam irradiation.

全文:

受限制的访问

作者简介

V. Bachurin

Valiev Institute of Physics and Technology of the RAS

Email: vibachurin@mail.ru

 Yaroslavl Branch

俄罗斯联邦, Yaroslavl

M. Smirnova

Valiev Institute of Physics and Technology of the RAS

Email: vibachurin@mail.ru

 Yaroslavl Branch

俄罗斯联邦, Yaroslavl

K. Lobzov

Valiev Institute of Physics and Technology of the RAS

Email: vibachurin@mail.ru

Yaroslavl Branch

俄罗斯联邦, Yaroslavl

M. Lebedev

Valiev Institute of Physics and Technology of the RAS

Email: vibachurin@mail.ru

Yaroslavl Branch

俄罗斯联邦, Yaroslavl

L. Mazaletsky

Valiev Institute of Physics and Technology of the RAS

Email: vibachurin@mail.ru

 Yaroslavl Branch

俄罗斯联邦, Yaroslavl

D. Pukhov

Valiev Institute of Physics and Technology of the RAS

Email: vibachurin@mail.ru

Yaroslavl Branch

俄罗斯联邦, Yaroslavl

A. Churilov

Valiev Institute of Physics and Technology of the RAS

编辑信件的主要联系方式.
Email: vibachurin@mail.ru

Yaroslavl Branch

俄罗斯联邦, Yaroslavl

参考

  1. Navez M., Sella C., Chaperot D. // C. R. Acad. Sci. 1962. № 254. P. 240. https://gallica.bnf.fr/ark:/12148/bpt6k3206x/f248.item
  2. Bradley R.M., Harper M.E. // J. Vac. Sci. Technol. A. 1988. V. 6. P. 2390. https://doi.org/10.1116/1.575561
  3. Sigmund P. // J. Mater. Sci. 1973. V. 8. P. 1545. https://doi.org/10.1007/BF00754888
  4. Cuerno R., Kim J.-S. // J. Appl. Phys. 2020. V. 128. P. 180902. https://doi.org/10.1063/5.0021308
  5. Makeev M.A., Cuerno R., Barbasi A. // Nucl. Instrum. Methods Phys. Res. B. 2002. V. 197. P. 185. https://doi.org/10.1016/S0168-583X(02)01436-2
  6. Valbusa U., Borgano C., Mongeot F. // J. Phys.: Condens. Matter. 2002. V. 14. P. 8153. https://doi.org/10.1088/0953-8984/14/35/301
  7. Muñoz-García J., Vázquez L., Castro M., Cago R., Redondo-Cubero A., Moreno-Barrado A., Cuerno R. // Mater. Sci. Eng. R. 2014. V. 86. P. 1. https://doi.org/10.1016/j.mser.2014.09.00
  8. Vázquez L., Redondo-Cubero A., Lorenz K., Palomares F. J., Cuerno R. // J. Phys.: Condens. Matter. 2022. V. 34. P. 333002. https://doi.org/10.1088/1361-648X/ac75a1
  9. Carter G., Vishnyakov V. // Surf. Interface Anal. 1995. V. 23. P. 514. https://doi.org/10.1002/sia.740230711
  10. Elst K., Vandervorst W. // J. Vac. Sci. Technol. A. 1994. V. 12. P. 3205. https://doi.org/10.1116/1.579239
  11. Smirnov V.K., Kibalov D.S., Krivelevich S.A., Lepshin P.A., Potapov E.V., Yankov R.A., Skorupa W., Makarov V.V., Danilin A.B. // Nucl. Instrum. Methods Phys. Res. B. 1999. V. 147. P. 310. https://doi.org/10.1016/S0168-583X(98)00610-7
  12. Hofsäss H. // Appl. Phys. A. 2014. V. 114. P. 401. https://doi.org/10.1007/s00339-013-8170-9
  13. Bobes O., Zhang K., Hofsäss H. // Phys. Rev. B. 2012. V. 86. P. 235414. https://doi.org/10.1103/PhysRevB.86.235414
  14. Carter G., Vishnyakov V. // Phys. Rev. B. 1996. V. 54. P. 17647. https://doi.org/10.1103/PhysRevB.54.17647
  15. Norris S., Brenner M.P., Aziz M.J. // J. Phys.: Condens. Matter. 2009. V. 21. P. 224017. https://doi.org/10.1088/0953-8984/21/22/224017
  16. Norris S., Samela J., Bukonte L., Backman M., Diurabekova F., Nordlund K., Madi C.S., Brenner M.P., Aziz M.J. // Nat. Commun. 2011. V. 2. P. 276. https://doi.org/10.1038/ncomms1280
  17. Eckstein W. Computer Simulation of Ion-Solid Interaction. Berlin: Springer, 1991. 279 p. https://doi.org/10.1007/978-3-642-73513-4
  18. Habenicht S., Lieb K.P., Koch J. Wieck A.D. // Phys. Rev. B. 2002. V. 65. P. 115327. https://doi.org/10.1103/PhysRevB.65.11532
  19. Smirnova M.A., Ivanov A.S., Bachurin V.I., Churilov A.B. // J. Phys.: Conf. Ser. 2021. V. 2086. P. 012210. https://doi.org/10.1088/1742-6596/2086/1/012210
  20. Smirnova M.A., Bachurin V.I., Mazaletsky L.A., Pukhov D.E., Churilov A.B., Rudy A.S. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2021. V. 15. P. 150. https://doi.org/10.1134/S1027451022020380
  21. Smirnova M.A., Bachurin V.I., Lebedev M.E., Mazaletsky L.A., Pukhov D.E., Churilov A.B., Rudy A.S. // Vacuum. 2022. V. 203. P. 111283. https://doi.org/10.1016/j.vacuum.2022.111238
  22. Frey L., Lehrer C., Ryssel H. // Appl. Phys. A. 2003. V. 76. P. 1017. https://doi.org/10.1007/s00339-002-1943-1
  23. Kramczynski D., Reuscher B., Gnaser H. // Phys. Rev. B. 2014. V. 89. P. 205422. https://doi.org/10.1103/PhysRevB.89.205422
  24. Cuerno R., Barabasi A.L. // Phys. Rev. Lett. 1995. V. 74. P. 4746. https://doi.org/10.1103/PhysRevLett.74.4746
  25. Kahng B., Jeong H., Barbasi A.I. // Appl. Phys. Lett. 2001. V. 78. P. 805. https://doi.org/10.1063/1.1343468
  26. Carter G., Nobes M. J., Paton F., Williams J.S., Whitton J.L. // Radiat. Eff. 1977. V. 33. P. 65. https://doi.org/10.1080/00337577708237469
  27. Vishnyakov V., Carter G., Goddard D.T., Nobes M. J. // Vacuum. 1995. V. 46. P. 637. https://doi.org/10.1016/0042-207X(95)00003-8
  28. Carter G., Vishnyakov V., Martynenko Yu.V., Nobes M.J. // J. Appl. Phys. 1995. V. 78. P. 3559. https://doi.org/10.1063/1.359931
  29. Alkemade P.F.A. // Phys. Rev. Lett. 2006. V. 96. P. 107602. https://doi.org/10.1103/PhysRevLett.96.107602
  30. Smirnov V.K., Kibalov D.S., Lepshin P.A., Bachurin V.I. // IzV. Akad. Nauk. Ser. Fiz. 2000. V. 64. P. 626.
  31. Karmakar P., Mollick S.A., Ghose D., Chakrabarti A. // Appl. Phys. Lett. 2008. V. 93. P. 103102. https://doi.org/10.1063/1.2974086
  32. Wittmaack K. // Surf. Interface Anal. 2000. V. 29. P. 721. https://doi.org/10.1002/1096-9918(200010)29: 10<721:: AID-SIA916>3.0.CO;2-Q
  33. Bachurin V.I., Lepshin P.A., Smirnov V.K. // Vacuum. 2000. V. 56. P. 241. https://doi.org/10.1016/S0042-207X(99)00194-3
  34. Bhowmik D., Mukherjee M., Karmakar P. // Nucl. Instrum. Methods B. 2019. V. 444. P. 54. https://doi.org/10.1016/j.nimb.2019.02.010
  35. Bachurin V.I., Zhuravlev I.V., Pukhov D.E., Rudy A.S., Simakin S.G., Smirnova M.A., Churilov A.B. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2020. V. 14. P. 784. https://doi.org/10.1134/S1027451020040229
  36. Rudy A.S., Kulikov A.N., Metlitskaya A.V. // Russ. Microelectron. 2011. V. 40. P. 109. https://doi.org/10.1134/S1063739711020089
  37. Rumyantsev A.V., Borgardt N.I., Volkov R.L. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2018. V. 12. P. 607. https://doi.org/10.1134/S1027451018030345
  38. Erlebacher J., Aziz M.J. // Phys. Rev. Lett. 1999. V. 82. P. 2330. https://doi.org/10.1103/PhysRevLett.82.2330
  39. Yewande E.O., Hartmann A.K., Kree R. // Phys. Rev. B. 2005. V. 71. P. 195405. https://doi.org/10.1103/PhysRevB.71.195405
  40. Aste T., Valbusa U. // New J. Phys. 2005. V. 7. P. 122. https://doi.org/10.1088/1367-2630/7/1/122
  41. Munoz-Garcia J., Castro M., Cuerno R. // Phys. Rev. Lett. 2006. V. 96. P. 086101. https://doi.org/10.1103/PhysRevLett.96.086101
  42. Munoz-Garcia J., Castro M., Cuerno R. // Phys. Rev. B. 2008. V. 78. P. 205408. https://doi.org/10.1103/PhysRevB.78.205408

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dependences of the curvature coefficients Sx (1) and Sy (2) on the angle of incidence of the ion beam, calculated using the “crater function” model with the SDTrimSP program.

下载 (14KB)
3. Fig. 2. SEM images of the Si surface at different angles of incidence of the Ga+ ion beam: a, b — 40°; c, d — 50°; d, f — 60°. D = 3.75 × 1018 cm–2 (a, c, d) and 6.25 × 1018 cm–2 (b, d, f).

下载 (93KB)
4. Fig. 3. Enlarged fragment of the Si surface relief formed as a result of irradiation with a beam of Ga+ ions at θ = 50° and D = 1019 cm–2.

下载 (12KB)
5. Fig. 4. SEM images of cross sections of Si samples obtained as a result of irradiation with a beam of Ga+ ions at θ = 30°, D = 2.5 × 1018 cm–2 (a) and θ = 50°, D = 6.25 × 1018 cm–2 (b).

下载 (16KB)
6. Fig. 5. Experimental dependences of the relief wavelength on the irradiation time at θ = 30° (empty symbols) and 40° (filled symbols). The dashed and dash-dotted lines, respectively, show the approximations by the power dependences λ ~ tn, where n = 0.33, 0.35.

下载 (11KB)
7. Fig. 6. SEM images of fragments of the Si surface irradiated with Ga+ ions at θ = 30° (a) and 40° (b). The images were obtained in situ on a Quanta 200i dual-beam setup. The white dots mark the positions of individual wave sections at each stage of irradiation. With a successive increase in t, their shift in the direction opposite to the direction of incidence of the ion beam is observed.

下载 (74KB)
8. Fig. 7. STEM images of the near-surface regions of Si after irradiation with Ga+ ions with an energy of 30 keV at θ = 30° (a) and 40° (b), D = 1017 cm–2.

下载 (33KB)
9. Fig. 8. Schematic representation of the process of nucleation of a wave-like relief at the edge of a sputtering crater during irradiation of the Si surface with a beam of Ga+ ions in the case of θ > 40°.

下载 (11KB)

版权所有 © Russian Academy of Sciences, 2024