An emergency beam loss monitoring system based on beam current transformers for the linear accelerator of the DARIA project

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Beam loss control is one of the critical tasks during the operation of high-intensity charged particle accelerators. The paper presents the concept of a non-destructive beam loss monitoring system based on beam current transformers for a linear resonance proton accelerator of the DARIA compact neutron source. Features of the practical implementation and operation of the proposed beam current transformers based on ferrite cores and the necessary preamplifier electronics using transimpedance amplifiers are considered. Particular attention is paid to the method of monitoring the difference of the measured beam currents between two successive detectors and the principles of generating an alarm signal for the implementation of a fast emergency protection system for the accelerator. Control of the current difference is implemented on the fast integration and mutual comparison of the beam pulses charge passing through the detectors, that increases the accuracy of measurements, while it is possible to select several discrete values of the measured difference: for the nominal operating mode and the accelerator tuning procedure, when beam losses can increase significantly. The system works at any beam pulse repetition rate, and to prevent false block from possible interferences, the final alarm signal is generated as the sum of three consecutive signals of the comparison circuit at the beam pulse repetition rate.

全文:

受限制的访问

作者简介

S. Gavrilov

Institute for nuclear research, Russian Academy of Sciences; Moscow institute of physics and technology

编辑信件的主要联系方式.
Email: s.gavrilov@inr.ru
俄罗斯联邦, Moscow; Dolgoprudny

V. Gaydash

Institute for nuclear research, Russian Academy of Sciences

Email: s.gavrilov@inr.ru
俄罗斯联邦, Moscow

А. Titov

Institute for nuclear research, Russian Academy of Sciences; Moscow institute of physics and technology

Email: s.gavrilov@inr.ru
俄罗斯联邦, Moscow; Dolgoprudny

参考

  1. Kropachev G., Kulevoy T., Sitnikov A. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2019. V. 13. № 6. P. 1126. https://www.doi.org/10.1134/S1027451019060399
  2. Gavrilov S., Titov I. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2023. V. 17. № 4. P. 782. https://www.doi.org/10.1134/S1027451023040055
  3. ЦКП “Ускорительный центр нейтронных исследований структуры вещества и ядерной медицины” (2016). ИЯИ РАН, Россия. https://www.inr.ru/ckp-new. Дата посещения: 10.06.2024.
  4. Forck P. Lecture notes on beam instrumentation and diagnostics. // JUAS, 2017.
  5. Blokland W. Beam current monitors. // Proc. USPAS, 2009.
  6. Bergoz — Beam Instrumentation and High-Precision Instrument (2024). Bergoz Instrumentation, Франция. https://www.bergoz.com. Дата посещения: 10.06.2024.
  7. Ferrite cores manufacturer and supplier — Cosmo Ferrites (2024). Cosmo Ferrites Limited. https://www.cosmoferrites.com. Дата посещения: 10.06.2024.
  8. Barnes M., Ducimetiere L. // Ferrite materials for in-vacuum instruments. 2021. /Proceedings of ARIES workshop “Materials and engineering technologies for particle accelerator beam diagnostics instruments”.
  9. Bayle H., Delferrière O., Gobin R., Harrault F., Marroncle J., Senée F., Simon C., Tuske O. // Rev. Sci. Instrum. 2014. V. 85. P. 02A713. https://www.doi.org/10.1063/1.4829736
  10. Jung W. Op Amp applications handbook. Elsevier, 2005. 896 p. ISBN 0-7506-7844-5

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Layout of possible beam diagnostic system equipment along the DARIA proton linear accelerator: 1 — inductive current sensor; 2 — Faraday cup; 3 — wire scanner; 4 — beam position sensor; 5 — emittance meter; 6 — bunch shape meter; 7 — ionization cross-section monitor.

下载 (32KB)
3. Fig. 2. Three-dimensional model of the IDT developed by INR RAS.

下载 (26KB)
4. Fig. 3. Photograph of two IDTs manufactured for the DARIA project.

下载 (16KB)
5. Fig. 4. Photograph of the manufactured IDT preamplifier.

下载 (23KB)
6. Fig. 5. Example of the result of the IDT signal processing program.

下载 (18KB)
7. Fig. 6. Functional diagram of the “Δ IDT” cell.

下载 (66KB)

版权所有 © Russian Academy of Sciences, 2024