Accelerometer in stroke rehabilitation: A modern look at the assessment of physical activity

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The importance of improving the quality of rehabilitation approaches is becoming particularly relevant, as the number of people with stroke-related disabilities is expected to grow due to advances in treatment that contribute to an increase in overall patient survival. Improving the understanding of physical activity during stroke rehabilitation is important, as physical activity is directly related to the recovery process of patients. It not only promotes recovery after a stroke, but also improves the state of the cardiovascular system, cognitive and motor functions, improves mood and increases survival. In this review, the authors analyzed the literature data on the use of accelerometry in the first stage of rehabilitation after stroke. Accelerometry quantifies physical activity by recording movements using accelerometers that measure acceleration along one or more axes. Accelerometry is a promising tool for improving the measurement of physical activity intensity during rehabilitation, although in practice its use remains limited. The use of the V3 and V3+ frameworks, which cover aspects of ergonomics testing, analytical and clinical validation, highlights the importance of a comprehensive assessment of accelerometry-based tools. The available data confirm the effectiveness of accelerometry in determining the intensity of physical activity, but also indicate an existing gap in the data of analytical and clinical studies.

全文:

受限制的访问

作者简介

Marina Kozlyakova

Pirogov Russian National Research Medical University

编辑信件的主要联系方式.
Email: forib@inbox.ru
ORCID iD: 0009-0008-4141-4142

student

俄罗斯联邦, Moscow

Anna Sirotenko

Vernadsky Crimean Federal University

Email: sirotenkoan19@yandex.ru
ORCID iD: 0009-0004-7861-0949
SPIN 代码: 1230-8576

student

俄罗斯联邦, Simferopol

Arnella Chepnyan

Kuban State Medical University

Email: arnella.chepnyan01@mail.ru
ORCID iD: 0009-0008-5049-202X

student

俄罗斯联邦, Krasnodar

Angelina Ekizova

Kuban State Medical University

Email: gelya438@gmail.com
ORCID iD: 0009-0009-2206-0040

student

俄罗斯联邦, Krasnodar

Rolan Mefaev

Vernadsky Crimean Federal University

Email: mefaev97@mail.ru
ORCID iD: 0000-0001-6480-3011
SPIN 代码: 1909-1887

student

俄罗斯联邦, Simferopol

Amir Zhachemukov

Kuban State Medical University

Email: amirzhachemukov@gmail.com
ORCID iD: 0009-0002-9729-5345

student

俄罗斯联邦, Krasnodar

Polina Gorlina

Mechnikov Northwestern State Medical University

Email: korraletolv@gmail.com
ORCID iD: 0009-0001-1174-4529

student

俄罗斯联邦, St. Petersburg

Milena Vakhtinskaya

Mechnikov Northwestern State Medical University

Email: milena.vah@icloud.com
ORCID iD: 0009-0001-6044-4485

student

俄罗斯联邦, St. Petersburg

Elina Khakova

Mechnikov Northwestern State Medical University

Email: elinahackova@yandex.ru
ORCID iD: 0009-0003-4719-1019

student

俄罗斯联邦, St. Petersburg

Airat Galimov

Bashkir State Medical University

Email: galimov-1940@mail.ru
ORCID iD: 0000-0003-4403-0204
SPIN 代码: 8742-4109

MD, Cand. Sci. (Medicine), associate professor

俄罗斯联邦, Ufa

Jasur Kholiqov

Bashkir State Medical University

Email: holikovzasur11@gmail.com
ORCID iD: 0009-0006-5224-8253

student

俄罗斯联邦, Ufa

Dmitriy Goncharov

Kuban State Medical University

Email: boss.dm00@mail.ru
ORCID iD: 0009-0000-5908-2934

student

俄罗斯联邦, Krasnodar

Sofia Yusubova

Kuban State Medical University

Email: yusubova_so@mail.ru
ORCID iD: 0009-0006-0172-9583

student

俄罗斯联邦, Krasnodar

Ruslan Khasanov

Bashkir State Medical University

Email: Rus.khasanov.1@mail.ru
ORCID iD: 0009-0000-2635-1616

student

俄罗斯联邦, Ufa

参考

  1. Klochihina OA, Shprakh VV, Stakhovskaya LV, et al. Indicators of stroke morbidity and mortality from stroke in the territories included in the Federal program of caring for patients with stroke. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(3–2):22–28. doi: 10.17116/jnevro202112103222
  2. Tsao CW, Aday AW, Almarzooq ZI, et al. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation. 2023;147(8):e93–e621. doi: 10.1161/CIR.0000000000001123
  3. Kovalchuk VV, Barantsevich ER, Galkin AS, et al. Multidisciplinary principle of management in stroke patients. Criterions of efficiency and factors of successful rehabilitation. Medical alphabet. 2020;(22):15–21.doi: 10.33667/2078-5631-2020-22-15-21
  4. French MA, Roemmich RT, Daley K, et al. Precision Rehabilitation: Optimizing Function, Adding Value to Health Care. Arch Phys Med Rehabil. 2022;103(6):1233–1239. doi: 10.1016/j.apmr.2022.01.154
  5. Miller LS, Forer SK. History and Efficacy of the “Three-Hour Rule”. PM R. 2021;13(5):535–539. doi: 10.1002/pmrj.12532
  6. Beaulieu CL, Peng J, Hade EM, et al. Level of Effort and 3 Hour Rule Compliance. Arch Phys Med Rehabil. 2019;100(10):1827–1836. doi: 10.1016/j.apmr.2019.01.014
  7. Lohse KR, Lang CE, Boyd LA. Is more better? Using metadata to explore dose-response relationships in stroke rehabilitation. Stroke. 2014;45(7):2053–2058. doi: 10.1161/STROKEAHA.114.004695
  8. Vlasova IA. Physical exercises in the system of medical rehabilitation. Acta Biomedica Scientifica. 2018;3(2):134–137. doi: 10.29413/ABS.2018-3.2.25
  9. Howley ET. Type of activity: resistance, aerobic and leisure versus occupational physical activity. Med Sci Sports Exerc. 2001;33(6):364–369; discussion S419–20. doi: 10.1097/00005768-200106001-00005
  10. Thivel D, Tremblay A, Genin PM, et al. Physical Activity, Inactivity, and Sedentary Behaviors: Definitions and Implications in Occupational Health. Front Public Health. 2018;6:288. doi: 10.3389/fpubh.2018.00288
  11. Billinger SA, Arena R, Bernhardt J, et al. Physical activity and exercise recommendations for stroke survivors: a statement for healthcare professionals from the American Heart Association/ American Stroke Association. Stroke. 2014;45(8):2532–2553. doi: 10.1161/STR.0000000000000022
  12. Gallanagh S, Quinn TJ, Alexander J, Walters MR. Physical activity in the prevention and treatment of stroke. ISRN Neurol. 2011;2011:953818. doi: 10.5402/2011/953818
  13. Kendall BJ, Gothe NP. Effect of Aerobic Exercise Interventions on Mobility among Stroke Patients: A Systematic Review. Am J Phys Med Rehabil. 2016;95(3):214–224. doi: 10.1097/PHM.0000000000000416
  14. Kramer SF, Hung SH, Brodtmann A. The Impact of Physical Activity Before and After Stroke on Stroke Risk and Recovery: a Narrative Review. Curr Neurol Neurosci Rep. 2019;19(6):28. doi: 10.1007/s11910-019-0949-4
  15. Lee IM, Shiroma EJ, Lobelo F, et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–229. doi: 10.1016/S0140-6736(12)61031-9
  16. Loprinzi PD, Addoh O. Accelerometer-Determined Physical Activity and All-Cause Mortality in a National Prospective Cohort Study of Adults Post-Acute Stroke. Am J Health Promot. 2018;32(1):24–27. doi: 10.1177/0890117117720061
  17. Piercy KL, Troiano RP, Ballard RM, et al. The Physical Activity Guidelines for Americans. JAMA. 2018;320(19):2020–2028. doi: 10.1001/jama.2018.14854
  18. Saunders DH, Greig CA, Mead GE. Physical activity and exercise after stroke: review of multiple meaningful benefits. Stroke. 2014;45(12):3742–3747. doi: 10.1161/STROKEAHA.114.004311
  19. Saunders DH, Sanderson M, Hayes S, et al. Physical fitness training for stroke patients. Cochrane Database Syst Rev. 2020;3(3):CD003316. doi: 10.1002/14651858.CD003316.pub7
  20. Lee CD, Folsom AR, Blair SN. Physical activity and stroke risk: a meta-analysis. Stroke. 2003;34(10):2475–81. doi: 10.1161/01.STR.0000091843.02517.9D
  21. Lee JY, Kwon S, Kim WS, et al. Feasibility, reliability, and validity of using accelerometers to measure physical activities of patients with stroke during inpatient rehabilitation. PLoS One. 2018;13(12):e0209607. doi: 10.1371/journal.pone.0209607
  22. Melnikova EA, Starkova EYu, Razumov AN. Modern view on upper limb physical rehabilitation after stroke. Literature review. Problems of Balneology, Physiotherapy and Exercise Therapy. 2023;100(1):42–53. doi: 10.17116/kurort202310001142
  23. Fini NA, Holland AE, Keating J, et al. How Physically Active Are People Following Stroke? Systematic Review and Quantitative Synthesis. Phys Ther. 2017;97(7):707–717. doi: 10.1093/ptj/pzx038
  24. van der Ploeg HP, Hillsdon M. Is sedentary behaviour just physical inactivity by another name? Int J Behav Nutr Phys Act. 2017;14(1):142. doi: 10.1186/s12966-017-0601-0
  25. Braakhuis HEM, Roelofs JMB, Berger MAM, et al. Intensity of daily physical activity — a key component for improving physical capacity after minor stroke? Disabil Rehabil. 2022;44(13):3048–3053. doi: 10.1080/09638288.2020.1851781
  26. Gothe NP, Bourbeau K. Associations Between Physical Activity Intensities and Physical Function in Stroke Survivors. Am J Phys Med Rehabil. 2020;99(8):733–738. doi: 10.1097/PHM.0000000000001410
  27. Koopman AD, Eken MM, van Bezeij T, et al. Does clinical rehabilitation impose sufficient cardiorespiratory strain to improve aerobic fitness? J Rehabil Med. 2013;45(1):92–98. doi: 10.2340/16501977-1072
  28. Sage M, Middleton LE, Tang A, et al. Validity of rating of perceived exertion ranges in individuals in the subacute stage of stroke recovery. Top Stroke Rehabil. 2013;20(6):519–527. doi: 10.1310/tsr2006-519
  29. Zabina EYu, Zinovyeva VA, Popovich MV, et al. Experience with an accelerometer to estimate physical activity level in the population. Russian Journal of Preventive Medicine. 2017;20(5):54–58. doi: 10.17116/profmed201720554-58
  30. Chen KY, Bassett DR Jr. The technology of accelerometry-based activity monitors: current and future. Med Sci Sports Exerc. 2005;37(11 Suppl):S490–500. doi: 10.1249/01.mss.0000185571.49104.82
  31. Yang CC, Hsu YL. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors (Basel). 2010;10(8):7772–7788. doi: 10.3390/s100807772
  32. Mtaweh H, Tuira L, Floh AA, Parshuram CS. Indirect Calorimetry: History, Technology, and Application. Front Pediatr. 2018;6:257. doi: 10.3389/fped.2018.00257
  33. Katzan I, Schuster A, Kinzy T. Physical Activity Monitoring Using a Fitbit Device in Ischemic Stroke Patients: Prospective Cohort Feasibility Study. JMIR Mhealth Uhealth. 2021;9(1):e14494. doi: 10.2196/14494
  34. Goldsack JC, Coravos A, Bakker JP, et al. Verification, analytical validation, and clinical validation (V3): the foundation of determining fit-for-purpose for Biometric Monitoring Technologies (BioMeTs). NPJ Digit Med. 2020;3:55. doi: 10.1038/s41746-020-0260-4
  35. Westerterp KR. Doubly labelled water assessment of energy expenditure: principle, practice, and promise. Eur J Appl Physiol. 2017;117(7):1277–1285. doi: 10.1007/s00421-017-3641-x
  36. Kenny GP, Notley SR, Gagnon D. Direct calorimetry: a brief historical review of its use in the study of human metabolism and thermoregulation. Eur J Appl Physiol. 2017;117(9):1765–1785. doi: 10.1007/s00421-017-3670-5
  37. Chastin SFM, De Craemer M, De Cocker K, et al. How does light-intensity physical activity associate with adult cardiometabolic health and mortality? Systematic review with meta-analysis of experimental and observational studies. Br J Sports Med. 2019;53(6):370–376. doi: 10.1136/bjsports-2017-097563
  38. Pate RR, Pratt M, Blair SN, et al. Physical activity and public health. A recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA. 1995;273(5):402–407. doi: 10.1001/jama.273.5.402
  39. Ainsworth BE, Haskell WL, Herrmann SD, et al. 2011 Compendium of Physical Activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575–1581. doi: 10.1249/MSS.0b013e31821ece12
  40. Fonte G, Schreiber C, Areno G, et al. Metabolic Energy Expenditure and Accelerometer-Determined Physical Activity Levels in Post-Stroke Hemiparetic Patients. J Stroke Cerebrovasc Dis. 2022;31(5):106397. doi: 10.1016/j.jstrokecerebrovasdis.2022.106397
  41. Danielsson A, Willén C, Sunnerhagen KS. Measurement of energy cost by the physiological cost index in walking after stroke. Arch Phys Med Rehabil. 2007;88(10):1298–1303. doi: 10.1016/j.apmr.2007.06.760
  42. Mendes MA, da Silva I, Ramires V, et al. Metabolic equivalent of task (METs) thresholds as an indicator of physical activity intensity. PLoS One. 2018;13(7):e0200701. doi: 10.1371/journal.pone.0200701
  43. Billinger SA, Coughenour E, Mackay-Lyons MJ, Ivey FM. Reduced cardiorespiratory fitness after stroke: biological consequences and exercise-induced adaptations. Stroke Res Treat. 2012;2012:959120. doi: 10.1155/2012/959120
  44. Smith AC, Saunders DH, Mead G. Cardiorespiratory fitness after stroke: a systematic review. Int J Stroke. 2012;7(6):499–510. doi: 10.1111/j.1747-4949.2012.00791.x
  45. Sverchkov VV, Bykov EV. Cardiorespiratory Endurance is Associated with Metabolic Syndrome Severity in Men. Journal Biomed. 2023;19(2):61–68. doi: 10.33647/2074-5982-19-2-61-68
  46. Jacobs P. NSCA’s Essentials of Training Special Populations. Human Kinetics: Champaign, IL, USA; 2017. Р. 341–365.
  47. Bakker JP, Barge R, Cobb B, et al. V3+: An extension to the V3 framework to ensure user-centricity and scalability of sensor-based digital health technologies [Internet]. 2024. Available from: https://datacc.dimesociety.org/wp-content/uploads/2024/02/V3_-An-extension-to-the-V3-framework-to-ensure-user-centricity-and-scalability-of-sDHTs-Preprint.pdf
  48. Kaminsky LA, Arena R, Ellingsen Ø, et al. Cardiorespiratory fitness and cardiovascular disease — The past, present, and future. Prog Cardiovasc Dis. 2019;62(2):86–93. doi: 10.1016/j.pcad.2019.01.002
  49. Ellis R, Kelly P, Huang C, et al. Sensor Verification and Analytical Validation of Algorithms to Measure Gait and Balance and Pronation/ Supination in Healthy Volunteers. Sensors (Basel). 2022;22(16):6275. doi: 10.3390/s22166275
  50. Robin J, Harrison JE, Kaufman LD, et al. Evaluation of Speech-Based Digital Biomarkers: Review and Recommendations. Digit Biomark. 2020;4(3):99–108. doi: 10.1159/000510820
  51. Arvidsson D, Fridolfsson J, Börjesson M, et al. Re-examination of accelerometer data processing and calibration for the assessment of physical activity intensity. Scand J Med Sci Sports. 2019;29(10):1442–1452. doi: 10.1111/sms.13470
  52. Migueles JH, Cadenas-Sanchez C, Ekelund U, et al. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Med. 2017;47(9):1821–1845. doi: 10.1007/s40279-017-0716-0
  53. Santos-Lozano A, Marín PJ, Torres-Luque G, et al. Technical variability of the GT3X accelerometer. Med Eng Phys. 2012;34(6):787–90. doi: 10.1016/j.medengphy.2012.02.005
  54. White JW 3rd, Finnegan OL, Tindall N, et al. Comparison of raw accelerometry data from ActiGraph, Apple Watch, Garmin, and Fitbit using a mechanical shaker table. PLoS One. 2024;19(3):e0286898. doi: 10.1371/journal.pone.0286898
  55. Büsching F, Kulau U, Gietzelt M, Wolf L. Comparison and validation of capacitive accelerometers for health care applications. Comput Methods Programs Biomed. 2012;106(2):79–88. doi: 10.1016/j.cmpb.2011.10.009
  56. Joseph C, Strömbäck B, Hagströmer M, Conradsson D. Accelerometry: A feasible method to monitor physical activity during sub-acute rehabilitation of persons with stroke. J Rehabil Med. 2018;50(5):429–434. doi: 10.2340/16501977-2326
  57. Strømmen AM, Christensen T, Jensen K. Quantitative measurement of physical activity in acute ischemic stroke and transient ischemic attack. Stroke. 2014;45(12):3649–3655. doi: 10.1161/STROKEAHA.114.006496
  58. Fini NA, Holland AE, Keating J, et al. How is physical activity monitored in people following stroke? Disabil Rehabil. 2015;37(19):1717–1731. doi: 10.3109/09638288.2014.978508
  59. Gebruers N, Vanroy C, Truijen S, et al. Monitoring of physical activity after stroke: a systematic review of accelerometry-based measures. Arch Phys Med Rehabil. 2010;91(2):288–297. doi: 10.1016/j.apmr.2009.10.025
  60. Klassen TD, Semrau JA, Dukelow SP, et al. Consumer-Based Physical Activity Monitor as a Practical Way to Measure Walking Intensity During Inpatient Stroke Rehabilitation. Stroke. 2017;48(9):2614–2617. doi: 10.1161/STROKEAHA.117.018175
  61. Peters DM, O’Brien ES, Kamrud KE, et al. Utilization of wearable technology to assess gait and mobility post-stroke: a systematic review. J Neuroeng Rehabil. 2021;18(1):67. doi: 10.1186/s12984-021-00863-x
  62. Maher C, Szeto K, Arnold J. The use of accelerometer-based wearable activity monitors in clinical settings: current practice, barriers, enablers, and future opportunities. BMC Health Serv Res. 2021;21(1):1064. doi: 10.1186/s12913-021-07096-7
  63. Freedson P, Bowles HR, Troiano R, Haskell W. Assessment of physical activity using wearable monitors: recommendations for monitor calibration and use in the field. Med Sci Sports Exerc. 2012;44(1):1–4. doi: 10.1249/MSS.0b013e3182399b7e
  64. Evenson KR, Goto MM, Furberg RD. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int J Behav Nutr Phys Act. 2015;12:159. doi: 10.1186/s12966-015-0314-1
  65. Faria GS, Polese JC, Ribeiro-Samora GA, et al. Validity of the accelerometer and smartphone application in estimating energy expenditure in individuals with chronic stroke. Braz J Phys Ther. 2019;23(3):236–243. doi: 10.1016/j.bjpt.2018.08.003
  66. Wu WJ, Yu HB, Tai WH, et al. Validity of Actigraph for Measuring Energy Expenditure in Healthy Adults: A Systematic Review and Meta-Analysis. Sensors (Basel). 2023;23(20):8545. doi: 10.3390/s23208545
  67. Veras L.d.S. Calibration and validation of accelerometers: Establishing new equations for energy expenditure and ground reaction force prediction [dissertation]. 2019. Available from: https://github.com/verasls/MSc_dissertation?ysclid=m547g0ul7l433901886
  68. Lyden K, Kozey SL, Staudenmeyer JW, Freedson PS. A comprehensive evaluation of commonly used accelerometer energy expenditure and MET prediction equations. Eur J Appl Physiol. 2011;111(2):187–201. doi: 10.1007/s00421-010-1639-8
  69. Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30(5):777–781. doi: 10.1097/00005768-199805000-00021
  70. Crouter SE, Clowers KG, Bassett DR Jr. A novel method for using accelerometer data to predict energy expenditure. J Appl Physiol (1985). 2006;100(4):1324–1331. doi: 10.1152/japplphysiol.00818.2005
  71. Daniel CR, Yazbek P, Santos ACA, Battistella LR. Validity study of a triaxial accelerometer for measuring energy expenditure in stroke inpatients of a physical medicine and rehabilitation center. Top Stroke Rehabil. 2023;30(4):402–409. doi: 10.1080/10749357.2022.2058292
  72. Pfeiffer KA, Clevenger KA, Kaplan A, et al. Accessibility and use of novel methods for predicting physical activity and energy expenditure using accelerometry: a scoping review. Physiol Meas. 2022;43(9). doi: 10.1088/1361-6579/ac89ca
  73. Sasaki JE, Hickey A, Mavilia M, et al. Validation of the Fitbit wireless activity tracker for prediction of energy expenditure. J Phys Act Health. 2015;12(2):149–154. doi: 10.1123/jpah.2012-0495
  74. U.S. Department of Health and Human Services FDA Center for Drug Evaluation and Research; U.S. Department of Health and Human Services FDA Center for Biologics Evaluation and Research; U.S. Department of Health and Human Services FDA Center for Devices and Radiological Health. Guidance for industry: patient-reported outcome measures: use in medical product development to support labeling claims: draft guidance. Health Qual Life Outcomes. 2006;4:79. doi: 10.1186/1477-7525-4-79
  75. Parker FR. Department of Health and Human Services, US Food and Drug Administration: Authority and responsibility. FDA Administration Enforce Man. CRC. 2005. Р. 21–60.
  76. Herrington WG, Goldsack JC, Landray MJ. Increasing the use of mobile technology-derived endpoints in clinical trials. Clin Trials. 2018;15(3):313–315. doi: 10.1177/1740774518755393
  77. Hart T, Dijkers MP, Whyte J, et al. A Theory-Driven System for the Specification of Rehabilitation Treatments. Arch Phys Med Rehabil. 2019;100(1):172–180. doi: 10.1016/j.apmr.2018.09.109
  78. Van Stan JH, Whyte J, Duffy JR, et al. Voice Therapy According to the Rehabilitation Treatment Specification System: Expert Consensus Ingredients and Targets. Am J Speech Lang Pathol. 2021;30(5):2169–2201. doi: 10.1044/2021_AJSLP-21-00076
  79. Lynch EA, Jones TM, Simpson DB, et al. ACTIOnS Collaboration. Activity monitors for increasing physical activity in adult stroke survivors. Cochrane Database Syst Rev. 2018;7(7):CD012543. doi: 10.1002/14651858.CD012543.pub2
  80. Mansfield A, Wong JS, Bryce J, et al. Use of Accelerometer-Based Feedback of Walking Activity for Appraising Progress With Walking-Related Goals in Inpatient Stroke Rehabilitation: A Randomized Controlled Trial. Neurorehabil Neural Repair. 2015;29(9):847–857. doi: 10.1177/1545968314567968
  81. Mattlage AE, Redlin SA, Rippee MA, et al. Use of Accelerometers to Examine Sedentary Time on an Acute Stroke Unit. J Neurol Phys Ther. 2015;39(3):166–171. doi: 10.1097/NPT.0000000000000092
  82. Usui H, Nishida Y. Relationship between physical activity and the very low-frequency component of heart rate variability after stroke. J Stroke Cerebrovasc Dis. 2015;24(4):840–843. doi: 10.1016/j.jstrokecerebrovasdis.2014.11.026

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The algorithm for selecting primary sources.

下载 (273KB)

版权所有 © Eco-Vector, 2024



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86505 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80654 от 15.03.2021 г
.