Seismic wave fields in a spherically symmetric Earth. Analytical solution
- 作者: Fatyanov А.G.1, Burmin V.Y.2
-
隶属关系:
- Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch of the Russian Academy of Sciences
- Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
- 期: 卷 514, 编号 2 (2024)
- 页面: 315-321
- 栏目: SEISMOLOGY
- ##submission.dateSubmitted##: 31.01.2025
- ##submission.datePublished##: 12.09.2024
- URL: https://rjmseer.com/2686-7397/article/view/650092
- DOI: https://doi.org/10.31857/S2686739724020155
- ID: 650092
如何引用文章
详细
An analytical solution is obtained for seismic wave fields in a spherically symmetric Earth. Asymptotics is used for stable calculation of wave fields. It is shown that the classical asymptotics in the case of a ball of large (in wavelengths) dimensions gives an error in the solution. The original asymptotics is used for efficient calculation of a solution without errors with high detail. A program has been created that makes it possible to carry out calculations for high-frequency (1 hertz and higher) teleseismic wave fields in a discrete (layered) sphere of planetary dimensions. Calculations can be carried out on personal computers with OpenMP parallelization. In the works of V. Yu. Burmina (2010, 2019) proposed a spherically symmetric model of the Earth. It is characterized by the fact that in it the outer core has a viscosity and, therefore, an effective shear modulus other than zero. For this model of the Earth, a highly detailed calculation was carried out with a carrier frequency of 1 hertz. As a result of the analytical calculation, it was found that high-frequency oscillations of small amplitude, the so-called “precursors,” appear ahead of the PKP waves. An analytical calculation showed that the theoretical seismograms for this model of the Earth are in many respects similar to the experimental data. This confirms the correctness of the ideas underlying its construction.
全文:

作者简介
А. Fatyanov
Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: fat@nmsf.sscc.ru
俄罗斯联邦, Novosibirsk
V. Burmin
Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
Email: burmin@ifz.ru
俄罗斯联邦, Moscow
参考
- Тихонов А. Н., Самарский А. А. Уравнения математической физики. М: Наука. 2004. 798 с.
- Фатьянов А. Г. Полуаналитический метод решения прямых динамических задач в слоистых средах // ДАН. 1990. Т. 310. № 2. С. 323‒327.
- Фатьянов А. Г., Бурмин В. Ю. Кинематика волновых полей в шаре // Геофизические процессы и биосфера. 2021. Т. 20. № 1. С. 61‒67.
- Фатьянов А. Г., Бурмин. В. Ю. Возникновение предвестников PKP-волн в радиально-симметричной слоистой Земле // ДАН. 2019. Т. 489. № 1. С. 84‒88.
- Wenbo Wu, Sidao Ni, Zhongwen Zhan, Shengji Wei. An SEM-DSM three-dimensional hybrid method for modelling teleseismic waves with complicated source-side structures // Geophysical Journal International. 2018. V. 215. Issue 1. P. 133–154.
- Hao Shen, Xiaotian Tang, Chao Lyu, Liang Zhao. Spatial- and temporal-interpolations for efficient hybrid wave numerical simulations // Frontiers in Earth Science, Sec. Solid Earth Geophysics. 2022. V. 10.
- Бурмин В. Ю. Строение мантии и ядра Земли по данным сейсмических станций мировой сети // Геофизические исследования. 2010. Т. 11. Спецвыпуск. С. 41‒71.
- Бурмин В. Ю. Некоторые обратные задачи сейсмологии. Теория, эксперименты, результаты – Москва. “Наука”. 2019. 277 с.
- Аки К., Ричардс П. Количественная сейсмология. М.: Мир. 1983. 880 с.
- Shanjie Zhang, Jian-Ming Jin. Computation of special functions. John Wiley. 1996. 717p.
- Керимов М. К., Скороходов С. Л. О некоторых асимптотических формулах для цилиндрических функций Бесселя // Ж. вычисл. матем. и матем. физ. 1990. Т 30. № 12. С. 1775–1784.
- Kennett B. L.N., Engdahl E. R., Buland R. Constraints on seismic velocities in the Earth from traveltimes // Geophys. J. Int. 1995. No. 122. P. 108–124.
补充文件
