Rotation of the apsidal line in the eclipsing system V1059 Cep

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Three light curves of the V1059 Cep eclipsing binary obtained in 2012, 2013 and 2021 were analyzed. We found the rapid apsidal motion in this system at the rate dw/dt = 7.2° per year. Assuming the equality of observed and theoretical apsidal motion rates we estimated physical characteristics of the components based on the data on their temperatures from the literature. According to our calculations the components are two very similar stars of the B7 V–B7.5 V spectral type with masses ≈(3.4 ± 0.3)M and age 180 ± 30 million years.

Full Text

Restricted Access

About the authors

V. S. Kozyreva

Lomonosov Moscow State University, Sternberg Astronomical Institute

Email: boa@astrin.uz
Russian Federation, Moscow

F. B. Khamrakulov

Ulugh Beg Astronomical Institute of the Academy of sciences of the Republic of Uzbekistan; Samarkand State University

Email: boa@astrin.uz
Uzbekistan, Tashkent; Samarkand

O. А. Burkhonov

Ulugh Beg Astronomical Institute of the Academy of sciences of the Republic of Uzbekistan; Samarkand State University

Author for correspondence.
Email: boa@astrin.uz
Uzbekistan, Tashkent; Samarkand

A. I. Bogomazov

Lomonosov Moscow State University, Sternberg Astronomical Institute

Email: boa@astrin.uz
Russian Federation, Moscow

B. L. Satovskiy

State Space Corporation “Roscosmos”

Email: boa@astrin.uz
Russian Federation, Moscow

References

  1. A.M. Черепащук, Тесные двойные звезды (М.: Физматлит, 2013).
  2. A.M. Cherepashchuk, Astron. Rep. Suppl. 66(S1), S5 (2022).
  3. T.E. Sterne, Monthly Not. Roy. Astron. Soc. 99, 662 (1939).
  4. A. Claret and A. Gimenez, Astron. and Astrophys. Suppl. Ser. 96, 255 (1992).
  5. K.F. Khaliullin and A.I. Khaliullina, Monthly Not. Roy. Astron. Soc. 382, 356 (2007).
  6. E.G. Lapukhin, S.A. Veselkov, and A.M. Zubareva, Peremennye Zvezdy. Prilozhenie 15(8), 1 (2015).
  7. S. Ehgamberdiev, Nature Astron. 2, 349 (2018).
  8. D.G. Monet, S.E. Levine, B. Canzian, H.D. Ables, et al., Astron. J. 125(2), 984 (2003).
  9. V.S. Kozyreva and A.I. Zakharov, Astron. Letters 27(11), 712 (2001).
  10. V.S. Kozyreva and A.I. Zakharov, Astron. Letters 32(5), 313 (2006).
  11. A.I. Khaliullina and K.F. Khaliullin, Soviet Astron. 28, 228 (1984).
  12. F. Anders, A. Khalatyan, C. Chiappini, A.B. Queiroz et al., VizieR On-line Data Catalog: I/349 (2019).
  13. A.G.A. Brown, A. Vallenari, T. Prusti, J.H.J. de Bruijne et al., Astron. and Astrophys. 649, id. A1 (2021).
  14. В.Л. Страйжис, Звезды с дефицитом металлов (Вильнюс: Мокслас, 1982).
  15. V. Straizys, Observatory 103, 223 (1983).
  16. W. van Hamme, Astron. J. 106, 2096 (1993).
  17. Д.Я. Мартынов, Затменные переменные звезды, под ред. В.Р. Цесевича (М.: Наука, 1971).
  18. E.C. Bellm, S.R. Kulkarni, M.J. Graham, R. Dekany, et al., Publ. Astron. Soc. Pacific 131(995), 018002 (2019).
  19. T. Levi-Civita, American J. Mathematics 59, 225 (1937).
  20. H.N. Russell, Monthly Not. Roy. Astron. Soc. 88, 641 (1928).
  21. М.С. Зверев, Б.В. Кукаркин, Д.Я. Мартынов, П.П. Паренаго, Н.Ф. Флоря, В.П. Цесевич, Переменные звезды, т. III (М.-Л.: Глав. ред. физ.-мат. литературы, 1947).
  22. Z. Kopal, Dynamics of close binary systems (Dordrecht, 1978).
  23. P. Swings, Zeitschrift für Astrophysik 12, 40 (1936).
  24. J.P. Zahn, Astron. and Astrophys. 41, 329 (1975).
  25. J.P. Zahn, Astron. and Astrophys. 57, 383 (1977).
  26. A. Claret and A. Gimenez, Astron. and Astrophys. Suppl. Ser. 81(1), 37 (1989).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Light curve of V1059 Cep based on 2021 observations in the Rc filter.

Download (43KB)
3. Fig. 2. Differential light curve at the minimum phases (a) and the discrepancy (b) between the theoretical and observed light curves (o – c), 2021 observations in the Rc filter, set of system parameters “b” from Table 2.

Download (56KB)
4. Fig. 3. Dependence of the coefficient k2 on the temperature of the star. Theoretical evolutionary tracks for stars with masses of 2.5M, 3.2M, 4.0M [26] are shown. The dashed lines show the boundaries of the parameter k2 found from our observations, as well as the effective temperatures of stars Teff from the catalogs [12, 18].

Download (45KB)
5. Fig. 4. Dependence of the radius of a star on its age. Theoretical evolutionary tracks for stars with masses of 2.5M, 3.2M, 4.0M are calculated using formula (11). The parameters for calculating the radii are taken from [26]. The dashed lines show the radius boundaries corresponding to the relative radii of the stars from Table 5 and the semimajor axis calculated using Kepler's third law.

Download (36KB)
6. Fig. 5. Dependence of the coefficient k2 on the age of the star. Theoretical evolutionary tracks for stars with masses of 2.5M, 3.2M, 4.0M are shown [26]. The dotted lines show the boundaries of the parameter k2 found from our observations.

Download (38KB)

Copyright (c) 2024 The Russian Academy of Sciences