Principles of the wave dark matter detection in gravitational redshift experiments in the Solar System

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We explore the possibility of using measurements of the gravitational redshift effect as a means to constrain wave dark matter – a class of models in which the dark matter is accounted for by light scalar particles that behave like classical waves. We construct a mathematical framework that is appropriate for clock comparison experiments with remote clocks and can be used to determine the values of the coupling constants of such dark matter with particles of the Standard Model. Using this framework, we consider an experiment to detect dark matter of the Galactic halo using two satellites equipped with accurate and stable atomic clocks and placed into elliptical heliocentric orbits. We demonstrate that, in most cases, the accuracy of this experiment turns out to be not better than that of ground-based experiments with colocated clocks. The limitation of theaccuracy of the space-based experiment is found to be due to the non-relativistic Doppler compensation system, required when using moving clocks, which decreases the amplitude of the useful signal. Possible solutions to this problem are discussed.

Full Text

Restricted Access

About the authors

S. V. Pilipenko

P. N. Lebedev Physical Institute of the Russian academy of Sciences

Author for correspondence.
Email: spilipenko@asc.rssi.ru
Russian Federation, Moscow

D. A. Litvinov

P. N. Lebedev Physical Institute of the Russian academy of Sciences

Email: spilipenko@asc.rssi.ru
Russian Federation, Moscow

M. V. Zakhvatkin

P. N. Lebedev Physical Institute of the Russian academy of Sciences; Keldysh Institute of Applied Mathematics

Email: spilipenko@asc.rssi.ru
Russian Federation, Moscow; Moscow

A. I. Filetkin

P. N. Lebedev Physical Institute of the Russian academy of Sciences; Lomonosov Moscow State University, Sternberg Astronomical Institute

Email: spilipenko@asc.rssi.ru
Russian Federation, Moscow; Moscow

References

  1. L. Hui, Ann. Rev. Astron. Astrophys. 59, 247 (2021), arXiv:2101.11735 [astro-ph.CO].
  2. K. Van Tilburg, N. Leefer, L. Bougas, and D. Budker, Phys. Rev. Letters 115, id. 011802 (2015), arXiv:1503.06886 [physics.atom-ph].
  3. A. Hees, J. Guéna, M. Abgrall, S. Bize, and P. Wolf, Phys. Rev. Letters 117(6), id. 061301 (2016), arXiv:1604.08514 [gr-qc].
  4. P. Wcisło, P. Ablewski, K. Beloy, S. Bilicki et al., Science Advances 4(12), id. eaau4869 (2018).
  5. C.J. Kennedy, E. Oelker, J.M. Robinson, T. Bothwell, et al., Phys. Rev. Letters 125(20), id. 201302 (2020), arXiv:2008.08773 [physics.atom-ph].
  6. S.M. Vermeulen, P. Relton, H. Grote, V. Raymond, et al., Nature 600(7889), 424 (2021), arXiv:2103.03783 [gr-qc].
  7. D.E. Kaplan, A. Mitridate, and T. Trickle, Phys. Rev. D 106(3), id. 035032 (2022).
  8. L. Bernus, O. Minazzoli, A. Fienga, A. Hees, M. Gastineau, J. Laskar, P. Deram, and A. Di Ruscio, Phys. Rev. D 105(4), id. 044057 (2022).
  9. S. Schlamminger, K.Y. Choi, T.A. Wagner, J.H. Gundlach, and E. G. Adelberger, Phys. Rev. Letters 100, id. 041101 (2008), arXiv:0712.0607 [gr-qc].
  10. T.A. Wagner, S. Schlamminger, J.H. Gundlach, and E.G. Adelberger, Classical and Quantum Gravity 29(18), id. 184002 (2012), arXiv:1207.2442 [gr-qc].
  11. J. Bergé, P. Brax, G. Métris, M. Pernot-Borrás, P. Touboul, and J.-P. Uzan, Phys. Rev. Letters 120(14), id. 141101 (2018), arXiv:1712.00483 [gr-qc].
  12. T. Bothwell, D. Kedar, E. Oelker, J.M. Robinson, S.L. Bromley, W. L. Tew, J. Ye, and C. J. Kennedy, Metrologia 56(6), id. 065004 (2019).
  13. K. Kim, A. Aeppli, T. Bothwell, and J. Ye, Phys. Rev. Letters 130(11), id. 113203 (2023).
  14. A. Arvanitaki, J. Huang, and K. Van Tilburg, Phys. Rev. D 91(1), id. 015015 (2015), arXiv:1405.2925 [hep-ph].
  15. A. Derevianko, Phys. Rev. A 97(4), id. 042506 (2018), arXiv:1605.09717 [physics.atom-ph].
  16. B.M. Roberts, G. Blewitt, C. Dailey, M. Murphy, et al., Nature Comm. 8, id. 1195 (2017), arXiv:1704.06844 [hep-ph].
  17. V. Schkolnik, D. Budker, O. Fartmann, V. Flambaum, et al., Quantum Sci. Technology 8(1), id. 014003 (2023), arXiv:2204.09611 [physics.atom-ph].
  18. A. Hees, O. Minazzoli, E. Savalle, Y.V. Stadnik, and P. Wolf, Phys. Rev. D 98(6), id. 064051 (2018), arXiv:1807.04512 [gr-qc].
  19. J. Veltmaat, B. Schwabe, and J.C. Niemeyer, Phys. Rev. D 101(8), id. 083518 (2020), arXiv:1911.09614 [astro-ph.CO].
  20. Y.-D. Tsai, J. Eby, and M.S. Safronova, Nature Astron. 7, 113 (2023), arXiv:2112.07674 [hep-ph].
  21. Y.A. El-Neaj, C. Alpigiani, S. Amairi- Pyka, H. Araújo, et al., EPJ Quantum Technology 7(1), id. 6 (2020).
  22. C.M. Will, Liv. Rev. Relativity 17(1), 4 (2014).
  23. R.F.C. Vessot, M.W. Levine, E.M. Mattison, E.L. Blomberg, Phys. Rev. Letters 45, 2081 (1980).
  24. D.A. Litvinov, V.N. Rudenko, A.V. Alakoz, U. Bach, et al., Phys. Letters A 382(33), 2192 (2018).
  25. P. Delva, N. Puchades, E. Schönemann, F. Dilssner, et al., Phys. Rev. Letters 121(23), id. 231101 (2018), arXiv:1812.03711 [gr-qc].
  26. S. Herrmann, F. Finke, M. Lülf, O. Kichakova, et al., Phys. Rev. Letters 121(23), id. 231102 (2018).
  27. P. Jetzer, Intern. J. Modern Physics D 26(5), 1741014 (2017).
  28. B. Altschul, Q.G. Bailey, L. Blanchet, K. Bongs, et al., Adv. Space Research 55(1), 501 (2015), arXiv:1404.4307 [gr-qc].
  29. M.P. Heß, L. Stringhetti, B. Hummelsberger, K. Hausner, et al., Acta Astronautica, 69, 929 (2011).
  30. D. Litvinov and S. Pilipenko, Classical and Quantum Gravity 38(13), id. 135010 (2021), arXiv:2108.09723 [gr-qc].
  31. A. Derevianko, K. Gibble, L. Hollberg, N.R. Newbury, C. Oates, M.S. Safronova, L.C. Sinclair, and N. Yu, Quantum Sci. Technology 7(4), id. 044002 (2022).
  32. J. Jaffe and R.F. Vessot, Phys. Rev. D 14(12), 3294 (1976).
  33. S. Turyshev, M. Shao, K. Nordtvedt, H. Dittus, et al., Exp. Astron. 27, 27 (2009).
  34. W.-T. Ni, Intern. J. Modern Physics D 17(7), 921 (2008).
  35. Y.V. Stadnik and V.V. Flambaum, Phys. Rev. Letters 115(20), id. 201301 (2015).
  36. G. P. Centers, J.W. Blanchard, J. Conrad, N.L. Figueroa, et al., Nature Comm. 12, id. 7321 (2021), arXiv:1905.13650 [astro-ph.CO].
  37. A.K. Drukier, K. Freese, and D.N. Spergel, Phys. Rev. D 33(12), 3495 (1986).
  38. N.W. Evans, C.A.J. O’Hare, and C. McCabe, Phys. Rev. D 99(2), id. 023012 (2019).
  39. C.A.J. O’Hare, N.W. Evans, C. McCabe, G. Myeong, and V. Belokurov, Phys. Rev. D 101, id. 023006 (2020).
  40. T. Flacke, C. Frugiuele, E. Fuchs, R.S. Gupta, and G. Perez, J. High Energy Phys. 2017(6), id. 50 (2017).
  41. T. Damour and J.F. Donoghue, Phys. Rev. D 82(8), id. 084033 (2010), arXiv:1007.2792 [gr-qc].
  42. T. Damour and J.F. Donoghue, Classical and Quantum Gravity 27(20), id. 202001 (2010).
  43. V. Dzuba and V. Flambaum, Phys. Rev. A 77(1), id. 012515 (2008).
  44. J. Guéna, M. Abgrall, D. Rovera, P. Rosenbusch, M.E. Tobar, P. Laurent, A. Clairon, and S. Bize, Phys. Rev. Letters 109(8), id. 080801 (2012), arXiv:1205.4235 [physics.atom-ph].
  45. A. Hees, O. Minazzoli, E. Savalle, Y. V. Stadnik, P. Wolf, and B. Roberts, arXiv:1905.08524 [gr-qc] (2019).
  46. N. Ashby, in Proc. of the 1998 IEEE Intern. Frequency Control Symp. (Cat. No.98CH36165), p. 320 (1998).
  47. L. Blanchet, C. Salomon, P. Teyssandier, and P. Wolf, Astron. and Astrophys. 370(1), 320 (2001).
  48. D. Litvinov, Astron. Letters 50(4), 55 (2024).
  49. R.F.C. Vessot and M.W. Levine, General Relativ. and Gravit. 10, 181 (1979).
  50. A. Khmelnitsky and V. Rubakov, J. Cosmology and Astroparticle Phys. 2014(2), id. 019 (2014), arXiv:1309.5888 [astro-ph.CO].
  51. L. Liu, D.-S. Lü, W.-B. Chen, T. Li, et al., Nature Comm. 9(1), 2760 (2018).
  52. H.L. van Trees, K.L. Bell, and Z. Tian, Detection, Estimation, and Modulation Theory. Part 1. Detection, Estimation, and Filtering Theory, 2nd ed. (New York, USA: Wiley, 2013).
  53. Z. Kang, S. Bettadpur, P. Nagel, H. Save, S. Poole, and N. Pie, J. Geodesy 94(9), id. 85 (2020).
  54. K. Abich, A. Abramovici, B. Amparan, A. Baatzsch, et al., Phys. Rev. Letters 123(3), id. 031101 (2019).
  55. P. Kurczynski, M.D. Johnson, S.S. Doeleman, K. Haworth, et al., in Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave 12 180, 189 (2022).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Supplementary
Download (1MB)
3. Fig. 1. Orbital configuration of two satellites. Both satellites move anti-clockwise. The first satellite is shown at the moments of sending time tB′ and receiving signal tB (the time interval between these moments is multiplied for clarity). The second satellite is shown at the moment of retransmission of the received signal tA. The solid arrows show a two-path signal, the dashed arrow - a single-path signal

Download (182KB)
4. Fig. 2. Constraints on the coupling constant γ(i) of the dilaton field φ identified with TM. On the left is linear coupling (i = 1), on the right is quadratic coupling (i = 1). The constant γ(i) is defined according to (22). The solid line is the experiment with two satellites in near-solar orbits, the dashed line is the experiment with two colocated clocks on the Earth (results of this paper). In the latter case, the screening predicted in [18] is taken into account. Shaded area - previously obtained constraints on γ(i) in the experiments with atomic clocks and tests of the ESE. Comparison with the previously obtained constraints is made under assumption (23), with the ground-based experiment - under assumption (37)

Download (146KB)

Copyright (c) 2024 The Russian Academy of Sciences