National software for processing information of the satellite – satellite space geodetic system

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the principle of operation, the main components and the results of the work of the software designed for processing large amounts of space geodetic information created at SAI MSU. The developed PC was used to process inter-satellite measurements of a space constellation intended to measure the parameters of the Earth’s gravitational field (EGF). The experimental option of the software enables working with both simulated data and real data of GRACE and GRACE-FO missions. This experimental version was used to recover the EGF parameters on real GRACE and GRACE-FO mission data. Solutions were developed for every month within the measurement periods of 2010 and 2021, as well as for extended periods of 4.3 years and 7.6 years. A comparison of the obtained solutions with the results of the EGF recovering obtained by other researchers is presented.

Full Text

Restricted Access

About the authors

A. S. Zhamkov

Lomonosov Moscow State University, Sternberg Astronomical Institute

Email: zhamkov@physics.msu.ru
Russian Federation, Moscow

S. V. Ayukov

Lomonosov Moscow State University, Sternberg Astronomical Institute

Email: s.ayukov@gmail.com
Russian Federation, Moscow

A. I. Filetkin

Lomonosov Moscow State University, Sternberg Astronomical Institute

Email: alex-filyotkin@mail.ru
Russian Federation, Moscow

V. K. Milyukov

Lomonosov Moscow State University, Sternberg Astronomical Institute

Email: vmilyukov@yandex.ru
Russian Federation, Moscow

I. Yu. Vlasov

Lomonosov Moscow State University, Sternberg Astronomical Institute

Email: i.vlasov78@mail.ru
Russian Federation, Moscow

V. N. Sementsov

Lomonosov Moscow State University, Sternberg Astronomical Institute

Email: valera@sai.msu.ru
Russian Federation, Moscow

I. V. Gusev

Lomonosov Moscow State University, Sternberg Astronomical Institute

Email: GIV-WR@yandex.ru
Russian Federation, Moscow

V. E. Zharov

Lomonosov Moscow State University

Author for correspondence.
Email: vladzh2007@yandex.ru

Faculty of Physics

Russian Federation, Moscow

References

  1. B.D. Tapley, B.E. Schutz, and G.H. Born, Statistical Orbit Determination. Chap. 4, p. 159 (Elsevier Academic Press, 2004), https://www.sciencedirect.com/science/article/abs/pii/B9780126836301500230
  2. M. Watkins and S. Bettadpur, in Proc. of the International Symposium on Space Dynamics, Biarritz, France (Centre National dТEtudes Spatiales (CNES), Delegation a la Communication), p. 1 (2000), https://hdl.handle.net/2014/15034.
  3. B. D. Tapley and C. Reigber, Amer. Geophys. Union, Fall Meeting 2001, id. G41C-02 (2001), https://api.semanticscholar.org/CorpusID:129565719.
  4. C. Dunn, W. Bertiger, Y. Bar-Sever, S. Desai, et al., GPS World 14(2), 16 (2003).
  5. P.J. Touboul, E. Willemenot, B. Foulon, and V. Josselin, Bollettino Di Geofisica Teorica Ed Applicata 40, 321 (1999), https://api.semanticscholar.org/CorpusID:130340650.
  6. B.D. Tapley, M.M. Watkins, F. Flechtner, C. Reigber, et al., Nature Climate Change 9, 358 (2019), https://api.semanticscholar.org/CorpusID:145864321.
  7. B.C. Gunter, R.E.M. Riva, T. Urban, R. Harpold, B. Schutz, P. Nagel, and M. Helsen, in Gravity, Geoid and Earth Observation, edited by S. P. Mertikas (Berlin, Heidelberg: Springer, 2010), Intern. Association of Geodesy Symposia 135, 563 (2010), https://doi.org/10.1007/978-3-642-10634-7_75.
  8. J.A. Bonin and H. Save, Ocean Science 16(2), 423 (2020), https://api.semanticscholar.org/CorpusID:226208015.
  9. J. Chen, B. Tapley, K.-W. Seo, C. Wilson, and J. Ries, Geophys. Res. Letters 46(23), 13984 (2019).
  10. F. Landerer, D. Wiese, K. Bentel, C. Boening, and M. Watkins, Geophys. Res. Letters 42(19), 8114 (2015).
  11. M. Girotto and M. Rodell, Extreme hydroclimatic events and multivariate hazards in a changing environment (Elsevier, 2019), p. 41.
  12. B. Scanlon, Z. Zhang, H. Save, D. Wiese, F. Landerer, D. Long, L. Longuevergne, and J. Chen, Water Resources Res. 52(12), 9412 (2016).
  13. K. Ghobadi-Far, S.-C. Han, S. Allgeyer, P. Tregoning, et al., J. Geodesy 94, 9 (2020).
  14. F. Landerer, F. Flechtner, H. Save, F. Webb, et al., Geophys. Res. Letters 47(12), id. e88306 (2020).
  15. K. Abich, A. Abramovici, B. Amparan, A. Baatzsch, et al., Phys. Rev. Letters 123(3), id. 031101 (2019), https://api.semanticscholar.org/CorpusID:195766777.
  16. N. Pie, S. Bettadpur, M. Tamisiea, B. Krichman, et al., J. Geophys. Res. Solid Earth 126(12), id. e2021JB022392 (2021).
  17. International Centre for Global Earth Models, ICGEM, http://icgem.gfz-potsdam.de/home.
  18. P. Zingerle, R. Pail, T. Gruber, and X. Oikonomidou, J. Geodesy 94(7), id. 66 (2020).
  19. A. Kvas, S. Behzadpour, M. Ellmer, B. Klinger, S. Strasser, N. Zehentner, and T. Mayer-Gürr, J. Geophys. Res. Solid Earth 124(8), 9332 (2019).
  20. T. Mayer-Gürr, S. Behzadpur, M. Ellmer, A. Kvas, B. Klinger, S. Strasser, and N. Zehentner, ITSG-Grace2018 — Monthly, Daily and Static Gravity Field Solutions from GRACE, https://graz.elsevierpure.com/en/publications/itsg-grace2018-monthly-daily-and-static-gravity-field-solutions-f.
  21. Q. Chen, Y. Shen, W. Chen, X. Zhang, and H. Hsu, J. Geodesy 90(6), 503 (2016).
  22. H. Zhou, Z. Luo, Z. Zhou, Q. Li, B. Zhong, and H. Hsu, A new time series of GRACE monthly gravity field models: HUST-Grace2016, https://doi.org/10.5880/ICGEM.2016.009.
  23. O. Akyilmaz, A Ustun, C. Aydin, N. Arslan, et al., ITU_GRACE16 The global gravity field model including GRACE data up to degree and order 180 of ITU and other collaborating institutions, https://dataservices.gfz-potsdam.de/icgem/showshort.php?id=escidoc:1640888.
  24. T. Mayer-Gürr, E. Kurtenbach, and A. Eicker, in European Geosciences Union General Assembly 2012: EGU 2012 held April 23–27 2012, Vienna, https://graz.elsevierpure.com/en/publications/itg-grace2010-the-new-grace-gravity-field-release-computed-in-bon.
  25. T. Mayer-Gürr, A. Eicker, and K. H. Ilk, in Observation of the Earth System from Space, edited by J. Flury, R. Rummel, C. Reigber, M. Rothacher, G. Boedecker, and U. Schreiber (Berlin, Heidelberg: Springer, 2006), p. 131.
  26. G. Petit and B. Luzum, IERS Technical Note № 36, 1 (2010), https://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html-1.htm.
  27. F.G. Lemoine, S.C. Kenyon, J.K. Factor, R.G. Trimmer, et al., The development of the joint nasa gsfc and the national imagery and mapping agency (nima) geopotential model egm96, https://cddis.nasa.gov/926/egm96/.
  28. F. Lyard, F. Lefevre, T. Letellier, and O. Francis, Ocean Dynamics 56(5–6), 394 (2006).
  29. F. Lyard, D. Allain, M. Cancet, L. Carrere, and N. Picot (2020), Ocean Sci. (EGU) discussion, https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/global-tide-fes/description-fes2014.html.
  30. J. Picone, A. Hedin, D. Drob, and A. Aikin, J. Geophys. Res. Space Physics 107(A12), id. 1468 (2002), https://doi.org/10.1029/2002JA009430.
  31. O. Montenbruck and E. Gill, Satellite Orbits. Models, Methods, and Applications (Berlin, Heidelberg: Springer-Verlag, 2000).
  32. W.M. Folkner, J.G. Williams, and D.H. Boggs, Interplanetary Network Progress Report 42–178, 1 (2009), https://ipnpr.jpl.nasa.gov/progress_report/42-178/178C.pdf.
  33. E. Anderson, Z. Bai, C. Bischof, S. Blackford, et al., LAPACK User’s Guide. 3d Edition, Software, Environments, and Tools 9, pp. 1-424 (1999).
  34. H.Y. Wen, G. Kruizinga, M. Paik, F. Landerer, W. Bertiger, C. Sakumura, T. Bandikova, and C. Mccullough, Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) Level-1. Data Product User Handbook (2019), ftp://isdcftp.gfz-potsdam.de/grace-fo/DOCUMENTS/Level-1/.
  35. S.-C. Wu, G. Kruizinga, and W. Bertiger, Algorithm Theoretical Basis Document for GRACE Level-1B. Data Processing V1.2 (2006), ftp://isdcftp.gfz-potsdam.de/grace/DOCUMENTS/Level-1/.
  36. М. Беликов and К. Тайбаторов, Кинематика и физика небесн. тел 6, 24 (1990).
  37. Global gravity field models (2023), http://icgem.gfz-potsdam.de/changes.
  38. А. Жамков, В. Милюков, Физика Земли 57, 139 (2021).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Block diagram of PC operation

Download (861KB)
3. Fig. 2. Results of GPZ recovery from GRACE data up to n = 100 compared to the ITSG-Grace2018s.gfc model

Download (249KB)
4. Fig. 3. Results of GFZ recovery to n = 90 at 30-day intervals using 2010 GRACE data compared to GSM (GFZ) models

Download (321KB)
5. Fig. 4. Results of GFZ recovery to n = 96 at 30-day intervals using 2021 GRACE-FO data compared to GSM (GFZ) models

Download (306KB)
6. Fig. 5. Results of GPZ recovery to n = 180 from GRACE data at 4.3 years and 7.6 years intervals compared to the ITG-Grace03s and ITG-Grace2010s models. Comparison of the ITG-Grace2010s and ITSG-Grace2018s models with the combined XGM2019e model is also shown

Download (351KB)

Copyright (c) 2024 The Russian Academy of Sciences