The evolutionary status of the Galaxy’s X-ray binary stars

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article is devoted to the analysis of the evolutionary status of the X-ray binary stars of the Galaxy. It is shown that the assumption of the conservative evolution of these binary systems leads to an overestimation of the X-ray luminosity of the Galaxy by 3–4 orders. The total observed rate of accretion of matter by relativistic components of X-ray binaries is close to ~10-6/yr, while the theoretically possible rate reaches ~10-2 /yr. The contradiction between these estimates is eliminated if two factors are taken into account. The first of them is the formation of a common envelope in massive X-ray binary systems after filling the Roche lobe by the donor and the brief phase of a bright X-ray source. The common envelope eliminates the output of X-ray radiation generated during accretion, and also leads to the loss of part of the donor’s matter from the system. The second factor is the presence of intense stellar wind of donors in massive X-ray binary, as well as the occurrence of induced stellar wind in low-mass donors due to exposure to hard radiation from an accreting relativistic star. At the same time, the generally accepted assumption that donors of X-ray binaries fill their Roche lobes may not be fulfilled. A significant part of the donor’s wind matter may be lost from the system. In addition, radiation can enhance the stellar wind of the accretion disk, and part of this wind will also leave the system. There are other factors that reduce the total number of accreted matter: supernova explosions in X-ray binaries, destroying part of these systems, the impossibility of accretion onto rapidly rotating young neutron stars with a strong magnetic field, as well as a rapid drop in the rate of loss of matter by the donor as its mass decreases, characteristic for low-mass X-ray systems.

About the authors

A. V. Tutukov

Institute of Astronomy of the Russian Academy of Sciences

Author for correspondence.
Email: atutukov@inasan.ru
Russian Federation, Moscow

A. V. Fedorova

Institute of Astronomy of the Russian Academy of Sciences

Email: afed@inasan.ru
Russian Federation, Moscow

References

  1. H. Chiu and E. E. Salpeter, Phys. Rev. Letters 12, 413 (1964).
  2. I. S. Shklovsky, 148, L1 (1967).
  3. A. G. W. Cameron, Astron. J. 72, 788 (1967).
  4. Ya. B. Zeldovich and N. I. Shakura, Astronomicheskii Zhurnal 46, 225 (1969).
  5. A. Sandage, P. Osmer, R. Giacconi, P. Gorenstein, et al., 146, 316 (1966) .
  6. J. E. Pringle and M. J. Rees, Astron. and Astrophys. 21, 1 (1972).
  7. M. M. Basko and R. A. Sunyaev, Astrophys. and Space Sci. 23, 117 (1973).
  8. D. Crampton and J. B. Hutchings, 178, L65 (1972) .
  9. R. Brucato and J. Kristian, 179, L129 (1973).
  10. A. Tutukov and L. Yungelson, Nauchnye Informatsii 27, 70 (1973).
  11. A. Tutukov and L. Yungelson, Nauchnye Informatsii 27, 86 (1973).
  12. V. Tutukov, A. V. Fedorova, E. V. Ergma, and L. R. Yungelson, Soviet Astron. Letters 13, 328 (1987) .
  13. I. Iben, A. V. Tutukov, and L. R. Yungelson, Astrophys. J. Suppl. 100, 233 (1995).
  14. I. Iben, A. V. Tutukov, and L. R. Yungelson, Astrophys. J. Suppl. 100, 217 (1995).
  15. А. М. Черепащук, Двойные звезды (М.: Наука, 1988) .
  16. B. Paczynski, in Structure and Evolution of Close Binary Systems, Proc. IAU Symp. 73, edited by P. Eggleton, S. Mitton and J. Whelan (Dordrecht: Reidel, 1976), p. 75.
  17. M. Gilfanov, G. Fabbiano, B. Lehmer, and A. Zezas, arXiv:2304.14080 [astro-ph.HE] (2023).
  18. B. A. Binder, A. K. Anderson, K. Garofali, M. Lazzarini, and B. F. Williams, arXiv:2305.01802 [astro-ph.HE] (2023) .
  19. T. C. Licquia and J. A. Newman, 806, id. 96 (2015).
  20. J. Zhang, S.-B. Qian, G.-B. Zhang, and X. Zhou, arXiv:2306.12002 [astro-ph.HE] (2023).
  21. B. Palit and S. Mondal, arXiv:2304.12731 [astro-ph.HE] (2023).
  22. H. Tranin, N. Webb, and O. Godet, arXiv:2304.11216 [astro-ph.HE] (2023).
  23. H. Klus, W. C. G. Ho, M. J. Coe, R. H. D. Corbet, and L. J. Townsend, Monthly Not. Roy. Astron. Soc. 437, 3863 (2014).
  24. S. Wang, Y. Qiu, J. Liu, and J. N. Bregman, 829, id. 20 (2016).
  25. J. van den Eijnden, N. Degenaar, T. D. Russell, J. C. A. Miller-Jones, A. R. Escorial, R. Wijnands, G. R. Sivakoff, and J. V. H. Santisteban, Monthly Not. Roy. Astron. Soc. 516, 4844 (2022).
  26. L. B. F. M. Waters and M. H. van Kerkwijk, Astron. and Astrophys. 223, 196 (1989).
  27. M. MacLeod and J. Grindlay, arXiv:2304.09368 [astro-ph.HE] (2023 ).
  28. K. El-Badry, H.-W. Rix, Y. Cendes, A. C. Rodriguez, et al., arXiv:2302.07880 [astro-ph.HE] (2023).
  29. K. A. Postnov, Astron. Letters 29, 372 (2003) .
  30. A. V. Tutukov and L. R. Yungelson, Astrofizika 12, 342 (1976).
  31. I. Iben and A. V. Tutukov, Astrophys. J. Suppl. 105, 145 (1996) .
  32. U. Munari and D. P. K. Banerjee, Monthly Not. Roy. Astron. Soc. 475, 508 (2018).
  33. M. Brightman, J. Hameury, J. Lasota, R. D. Baldi, et al., arXiv:2305.01693 [astro-ph.HE] (2023).
  34. L. B. Koninckx, M. A. De Vito, and O. G. Benvenuto, Astron. and Astrophys. 674, 97 (2023).
  35. S. Ozdemir, Astron. Nachricht. 331, 300 (2010).
  36. S. Karino, Monthly Not. Roy. Astron. Soc. 507, 1002 (2021) .
  37. Y. Naze, G. Rauw, M. A. Smith, and C. Motch, Monthly Not. Roy. Astron. Soc. 516, 3366 (2022).
  38. M. Revnivtsev, K. Postnov, A. Kuranov, and H. Ritter, Astron. and Astrophys. 526, id. 94 (2011).
  39. J. J. Tobin, S. S. R. Offner, K. M. Kratter, S. T. Megeath, et al., 925, id. 39 (2022) .
  40. M. Moe and R. Di Stefano, Astrophys. J. Suppl. 230, id. 15 (2017).
  41. A. V. Tutukov and D. A. Kovaleva, INASAN Sci. Rep. 3, 342 (2019).
  42. P. Kroupa and T. Jerabkova, arXiv:2112.10788 [astro-ph.HE] (2021).
  43. A. Tokovinin and C. Briceno, Astron. J. 159, id. 15 (2020) .
  44. А. Г. Масевич, А. В. Тутуков, Эволюция звезд: теория и наблюдения (М.: Наука, 1988).
  45. P. D. Kiel and J. R. Hurley, Monthly Not. Roy. Astron. Soc. 369, 1152 (2006).
  46. Z. T. Kraicheva, E. I. Popova, A. V. Tutukov, and L. R. Yungelson, Astrofizika 22, 105 (1985) .
  47. K. Gullikson, A. Kraus, and S. Dodson-Robinson, Astron. J. 152, id. 40 (2016).
  48. R. A. London and B. P. Flannery, 258, 260 (1982).
  49. A. V. Tutukov and A. V. Fedorova, Astron. Rep. 66, 925 (2022) .
  50. F. Fortin, A. Kalsi, F. Garcia, and S.Chaty, arXiv:2401.11931 [astro-ph.HE] (2024).
  51. F. Fortin, F. Garcia, A. S. Bunzel, and S. Chaty, Astron. and Astrophys. 671, id. A149 (2023).
  52. A. V. Tutukov, Nauchnye Informatsii 11, 62 (1969) .
  53. A. V. Tutukov and A. V. Fedorova, Astron. Rep. 47, 826 (2003) .
  54. A. V. Tutukov and A. V. Fedorova, Astron. Rep. 51, 847 (2007) .
  55. S. Martocchia, N. Bastian, S. Saracino, and S. Kamann, Monthly Not. Roy. Astron. Soc. 520, 4080 (2023) .
  56. A. V. Tutukov, Nauchnye Informatsii 11, 69 (1969) .
  57. R. Tomaru, D. Chris, H. Odaka, and A. Tanimoto, Monthly Not. Roy. Astron. Soc. 523, 3441 (2023).
  58. A. Tutukov, L. Yungelson, and A. Klayman, Nauchnye Informatsii 27, 3 (1973).
  59. K. Nomoto, 257, 780 (1982).
  60. I. Iben and A. V. Tutukov, 431, 264 (1994) .
  61. T. L. S. Wong and J. Schwab, 878, id. 100 (2019).
  62. J. Brooks, L. Bildsten, J. Schwab, and B. Paxton, 821, id. 28 (2016).
  63. E. B. Bauer, C. J. White, and L. Bildsten, 887, id. 68 (2019) .
  64. A. A. C. Sander and J. S. Vink, Monthly Not. Roy. Astron. Soc. 499, 873 (2020).
  65. J. D. Cummings, J. S. Kalirai, P.-E. Tremblay, E. Ramirez-Ruiz, and J. Choi, arXiv:1809.01673 [astro-ph.HE] (2018) .
  66. K. Nomoto, 277, 791 (1984).
  67. A. Mummery, T. Wevers, R. Saxton, and D. Pasham, Monthly Not. Roy. Astron. Soc. 519, 5828 (2023).
  68. A. Malyali, Z. Liu, A. Merloni, A. Rau, et al., Monthly Not. Roy. Astron. Soc. 520, 4209 (2023).
  69. J. Antoniadis, T. M. Tauris, F. Ozel, E. Barr, D. J. Champion, and P. C. C. Freire, arXiv:1605.01665 [astro-ph.HE] (2016) .
  70. C. Ye and M. Fishbach, 937, id. 73 (2022).
  71. N. Kumar and V. V. Sokolov, Astrophys. Bull. 77, 197 (2022) .
  72. A. F. Illarionov and R. A. Sunyaev, Astron. and Astrophys. 39, 185 (1975).
  73. R. Perna, Y. Wang, W. M. Farr, N. Leigh, and M. Cantiello, Astrophys. J. Letters 878, id. L1 (2019) .
  74. A. V. Tutukov and A. V. Fedorova, Astron. Rep. 52, 985 (2008) .
  75. B. D. Lehmer, R. T. Eufrasio, P. Tzanavaris, A. Basu-Zych, et al., Astrophys. J. Suppl. 243, id. 3 (2019) .
  76. S. V. Forsblom, J. Poutanen, S. S. Tsygankov, M. Bachetti, et al., Astrophys. J. Letters 947, id. L20 (2023).
  77. A. V. Tutukov and A. V. Fedorova, Astron. Rep. 46, 765 (2002) .
  78. J. Neilsen and N. Degenaar, arXiv:2304.05412 [astro-ph.HE] (2023) .
  79. A. L. Avakyan, G. V. Lipunova, and K. L. Malanchev, arXiv:2310.20580 [astro-ph.HE] (2023) .
  80. T. N. O’Doherty, A. Bahramian, J. C. A. Miller-Jones, A. J. Goodwin, I. Mandel, R. Willcox, P. Atri, and J. Strader, Monthly Not. Roy. Astron. Soc. 521, 2504 (2023) .
  81. M. Nicholl, S. Srivastav, M. D. Fulton, S. Gomez, et al., Astrophys. J. Letters 954, id. L28 (2023) .
  82. R. Margutti, B. D. Metzger, R. Chornock, I. Vurm, et al., 872, id. 18 (2019) .
  83. N. Markova, J. Puls, T. Repolust, and H. Markov, Astron. and Astrophys. 413, 693 (2004).
  84. А. V. Tutukov and А. V. Fedorova, Astron. Rep. 47, 600 (2003) .
  85. H. Lamers, G. Snow, and D. Lindholm, 455, 269 (1995).
  86. C. Hawcroft, H. Sana, L. Mahy, J. O. Sundqvist, et al., arXiv:2303.12165 [astro-ph.HE] (2023).
  87. L. E. Muijres, J. S. Vink, A. de Koter, P. E. Muller, and N. Langer, Astron. and Astrophys. 537, id. A37 (2012) .
  88. H. Delgado-Marti, F. M. Levine, E. Pfahl, and S. A. Rappaport, 546, 455 (2001) .
  89. I. Iben, A. V. Tutukov, and A. V. Fedorova, 486, 955 (1997) .
  90. A. Yu. Sytov, P. V. Kaigorodov, A. M. Fateeva, and D. V. Bisikalo, Astron. Rep. 55, 793 (2011) .

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 The Russian Academy of Sciences