Linear polarization of the helium D3 line by accelerated protons in the solar chromosphere

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the article, we have studied the impact linear polarization of the helium D3 line that takes place in the solar chromosphere under the action of protons accelerated in solar flares. The dependence of the energy distribution of protons on the distance traveled inside the chromosphere is calculated. The ratio of the concentrations of nonthermal protons and thermal electrons at different depths is theoretically determined. From the calculation of the degree of linear polarization of the helium line D3 for different layers of the chromosphere, the region of probable formation of the line is determined.

Full Text

Restricted Access

About the authors

M. В. Shapochkin

Moscow Physical Society

Author for correspondence.
Email: labex@yandex.ru
Russian Federation, Moscow

S. A. Bogachev

Space Research Institute of the Russian Academy of Sciences

Email: labex@yandex.ru
Russian Federation, Moscow

References

  1. S.V. Shestov, A.N. Zhukov, B. Inhester, L. Dolla, and M. Mierla, Astron. and Astrophys. 652, id. A4 (2021).
  2. D. Müller, O.C. St. Cyr, I. Zouganelis, H.R. Gilbert, et al., Astron. and Astrophys. 642, id. A1 (2020), arXiv:2009.00861 [astro-ph.SR].
  3. E. Antonucci, S. Fineschi, G. Naletto, M. Romoli, et al., in Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray, Proc. of SPIE Conf. Ser. 8443, id. 844309 (2012).
  4. O. Floyd and P. Lamy, Solar Phys. 294, 168 (2019).
  5. P. Heinzel, J. Štěpán, A. Bemporad, S. Fineschi, S. Jejčič, N. Labrosse, and R. Susino, 900, id. 8 (2020), arXiv:2007.08940 [astro-ph.SR].
  6. S.A. Bogachev and M.B. Shapochkin, Astron. Rep. 66, 1329 (2022).
  7. J. Štěpán, P. Heinzel, and S. Sahal-Bréchot, Astron. and Astrophys. 465, 621 (2007), arXiv:astro-ph/0701617.
  8. V.P. Shevelko and L.A. Vainshtein, Atomic physics for hot plasmas (Bristol, Philadelphia: Institute of Physics Pub., 1993).
  9. J.C. Brown, Solar Phys. 18, 489 (1971).
  10. S. I. Syrovatskii and O. P. Shmeleva, Soviet Astron. 16, 273 (1972).
  11. S.A. Bogachev and B.V. Somov, Astron. Letters 33, 54 (2007).
  12. Б.В. Сомов, С.И. Сыроватский, Успехи физ. наук 120(10), 217 (1976).
  13. G.S. Kerr, J.C. Allred, A.F. Kowalski, R.O. Milligan, H.S. Hudson, N. Zambrana Prado, T. A. Kucera, and J. W. Brosius, 945(2), id. 118 (2023), arXiv:2302.02017 [astro-ph.SR].
  14. S.A. Kazantsev and J.-C. Henoux, Polarization spectroscopy of ionized gases, Astrophys. Space Sci. Library 200 (Dordrecht; Boston: Kluwer Academic Publishers, 1995).
  15. E. Haug, Solar Phys. 71, 77 (1981).
  16. Л.А. Вайнштейн, И.И. Собельман, Е.А. Юков, Возбуждение атомов и уширение спектральных линий (М.: Наука, 1979).
  17. R.H. McFarland and E.A. Soltysik, Phys. Rev. 127(6), 2090 (1962).
  18. M.B. Shapochkin, Physica Scripta 60(4), 335 (1999).
  19. J.C. Hénoux, D. Heristchi, G. Chambe, B. Woodgate, R. Shine, J. Beckers, and M. Machado, Astron. and Astrophys. 119, 233 (1983).
  20. J.C. Hénoux and M. Karlický, Astron. and Astrophys. 341, 896 (1999).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Cross-section of excitation by electrons (red solid line) and protons (blue dashed line) of the 3D33,2,1 – 2P32,1,0 transition of the He I atom.

Download (35KB)
3. Fig. 2. Temperature dependence of the rate of excitation processes of the 3D33.2.1 – 2P32.1.0 transition of the He I atom by electrons (red) and protons (blue).

Download (44KB)
4. Fig. 3. Distribution of accelerated protons in the solar atmosphere. The solid line (red) is the initial power-law distribution EN = 0 with slope φ = 3 and minimum energy ε = 10 keV. The dotted line (blue) is the distribution of particles at a depth of EN = 100 keV (x ≈ 1600 km). The dotted line (black) is the distribution of particles at a depth of EN = 200 keV (x ≈ 1800 km).

Download (36KB)
5. Fig. 4. An example of calculating the effective power spectrum (red line) from the original spectrum (blue line) inside the chromosphere.

Download (35KB)
6. Fig. 5. Dependence of the degree of linear polarization of ionized gas on the parameter ε1 for δ = 2.5 and θ = 37.5°.

Download (22KB)
7. Fig. 6. Dependence of the degree of linear polarization of ionized gas on the value of the pitch angle θ at δ = 2.5, ε1 = 15 keV.

Download (25KB)
8. Fig. 7. Dependence of the degree of linear polarization of ionized gas on the parameter n for d = 2.5, ε1 = 15 keV and θ = 37.5°.

Download (21KB)

Copyright (c) 2024 The Russian Academy of Sciences