The effect of the star high energy radiation flux on the structure of the hydrogen-helium upper atmosphere of hot Jupiter

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the paper the structure of the hydrogen-helium upper atmosphere of hot Jupiter depending on the flux of hard ultraviolet radiation from the parent star is investigated. Aeronomic 1D model based on the approximation of single-fluid multicomponent hydrodynamics is used for calculations. The numerical model takes into account chemical reactions, heating-cooling processes, tidal action from the star, diffusion and thermal conductivity. Calculations were performed for the hot Jupiter HD 209458b. In all the solutions obtained a transonic planetary wind is formed leading to a hydrodynamic outflow of the atmosphere. Taking into account the tidal force leads to increase the outflow of atmosphere by 2.5 times compared to the case in which only the gravity of the planet is considered. The dependence of mass loss rate of the planet on the flux of hard ultraviolet radiation turned out to be nonlinear. This may be due to a different dominant mechanism of conversion of absorbed radiant energy in the upper atmosphere within the limits of weak and strong ultraviolet fluxes.

About the authors

A. G. Zhilkin

Institute of Astronomy of the Russian Academy of Sciences

Author for correspondence.
Email: zhilkin@inasan.ru
Russian Federation, Moscow

Y. G. Gladysheva

Institute of Astronomy of the Russian Academy of Sciences

Email: zhilkin@inasan.ru
Russian Federation, Moscow

V. I. Shematovich

Institute of Astronomy of the Russian Academy of Sciences

Email: zhilkin@inasan.ru
Russian Federation, Moscow

G. N. Tsurikov

Institute of Astronomy of the Russian Academy of Sciences

Email: zhilkin@inasan.ru
Russian Federation, Moscow

D. V. Bisikalo

National center of physics and mathematics; Institute of Astronomy of the Russian Academy of Sciences

Email: zhilkin@inasan.ru
Russian Federation, Sarov; Moscow

References

  1. A. J. Tylka, C. M. S. Cohen, W. F. Dietrich, M. A. Lee, et al., Astrophys. J. Suppl. 164(2), 536 (2006).
  2. O. Raukunen, M. Paassilta, R. Vainio, J. V. Rodriguez, et al., J. Space Weath. and Space Climat 10, id. 24 (2020).
  3. V. I. Shematovich and M. Ya. Marov, Physics Uspekhi 61(3), 217 (2018).
  4. D. V. Bisikalo, V. I. Shematovich, A. A. Cherenkov, L. Fossati, and C. Moestl, 869(2), id. 108 (2018).
  5. M. A. Tilley, A. Segura, V. Meadows, S. Hawley, and J. Davenport, Astrobiology 19, 64 (2019).
  6. А. Г. Жилкин, Ю. Г. Гладышева, В. И. Шематович, Д. В. Бисикало, Астрон. журн. 100(12), 1190 (2023).
  7. D. V. Bisikalo, V. I. Shematovich, P. V. Kaygorodov, and A. G. Zhilkin, Physics Uspekhi 64(8), 747 (2021).
  8. A. Segura, L. M. Walkowicz, V. Meadows, J. Kasting, and S. Hawley, Astrobiology 10(7), 751 (2010).
  9. D. Atri and S. R. C. Mogan, Monthly Not. Roy. Astron. Soc. Letters 500(1), L1 (2021).
  10. L. N. R. do Amaral, L. Barnes, A. Segura, and R. Luger, 928(1), id. 12 (2022).
  11. H. Lammer, F. Selsis, I. Ribas, E. F. Guinan, S. J. Bauer, and W. W. Weiss, 598(2), L121 (2003).
  12. R. Luger, R. Barnes, E. Lopez, J. Fortney, B. Jackson, and V. Meadows, Astrobiology 15(1), 57 (2015).
  13. H. Maehara, T. Shibayama, S. Notsu, Y. Notsu, et al., Nature 485(7399), 478 (2012).
  14. Y. Notsu, H. Maehara, S. Honda, S. L. Hawley, et al., 876(1), id. 58 (2019).
  15. M. N. Günther, Z. Zhan, S. Seager, P. B. Rimmer, et al., Astron. J. 159(2), id. 60 (2020).
  16. D. J. Hollenbach, H. W. Yorke, and D. Johnstone, in Protostars and Planets IV, edited by V. Mannings, A. P. Boss, and S. S. Russell (Tucson, AZ: University of Arizona Press, 2000), p. 401.
  17. I. Ribas, E. F. Guinan, M. Gudel, and M. Audard, 622(1), 680 (2005).
  18. A. G. Sreejith, L. Fossati, A. Youngblood, K. France, and S. Ambily, Astron. and Astrophys. 644, id. A67 (2020).
  19. K. France, N. Arulanantham, L. Fossati, A. F. Lanza, R. O. P. Loyd, S. Redfield, P. C. Schneider, Astrophys. J. Supl. 239(1), id. 16, (2018).
  20. J. L. Linsky, J. Fontenla, and K. France, 780(1), id. 61, (2014).
  21. R. A. Murray-Clay, E. I. Chiang, and N. Murray, 693(1), 23 (2009).
  22. J. H. Guo, 733(2), id. 98 (2011).
  23. D. E. Ionov, V. I. Shematovich, and Ya. N. Pavlyuchenkov, Astron. Rep. 61(5), 387 (2017).
  24. D. E. Ionov, Y. N. Pavlyuchenkov, and V. I. Shematovich, Monthly Not. Roy. Astron. Soc. 476(4), 5639 (2018).
  25. R. V. Yelle, Icarus 170(1), 167 (2004).
  26. F. Tian, O. B. Toon, A. A. Pavlov, and H. De Sterck, 621(2), 1049 (2005).
  27. A. Garcia Muñoz, Planet. Space Sci. 55(10), 1426 (2007).
  28. T. Penz, N. V. Erkaev, Yu. N. Kulikov, D. Langmayr, et al., Planet. Space Sci. 56(9), 1260 (2008).
  29. T. T. Koskinen, J. Y-K. Cho, N. Achilleos, and A. D. Aylward, 722(1), 178 (2010).
  30. I. F. Shaikhislamov, M. L. Khodachenko, Yu. L. Sasunov, H. Lammer, K. G. Kislyakova, and N. V. Erkaev, 795(2), id. 132 (2014).
  31. M. Salz, S. Czesla, P. C. Schneider, and J. H. M. M. Schmitt, Astron. and Astrophys. 586, id. A75 (2016).
  32. A. S. Arakcheev, A. G. Zhilkin, P. V. Kaigorodov, D. V. Bisikalo, and A. G. Kosovichev, Astron. Rep. 61(11), 932 (2017).
  33. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 63(7), 550 (2019).
  34. A. G. Zhilkin, D. V. Bisikalo, and P. V. Kaygorodov, Astron. Rep. 64(3), 259 (2020).
  35. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 64(7), 563 (2020).
  36. A. G. Zhilkin and D. V Bisikalo, Universe 7(11), id. 422 (2021).
  37. A. G. Zhilkin, Astron. Rep. 67(4), 307 (2023).
  38. Д. В. Бисикало, А. Г. Жилкин, А. А. Боярчук, Газодинамика тесных двойных звезд (М.: Физматлит, 2013).
  39. C. P. Johnstone, M. Güdel, H. Lammer, and K. G. Kis-lyakova, Astron. and Astrophys. 617, id. A107 (2018).
  40. P. M. Banks and G. Kockarts, Aeronomy (New York: Academic Press, 1973).
  41. A. Garcia Muñoz, Planet. Space Sci. 55(10), 1414 (2007).
  42. R. W. Schunk and A. F. Nagy, Ionospheres: physics, plasma physics, and chemistry (Cambridge Univ. Press, 2nd Ed., 2000, 2009).
  43. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 66(11), 1008 (2022).
  44. А. А. Самарский, Е. С. Николаев, Методы решения сеточных уравнений (М.: Наука, 1978).
  45. M. G. Malygin, R. Kuiper, H. Klahr, C. P. Dullemond, and Th. Henning, Astron. and Astrophys. 568, id. A91 (2014).
  46. R. S. Freedman, J. Lustig-Yaeger, J. J. Fortney, R. E. Lupu, M. S. Marley, and K. Lodders, Astrophys. J. Supl. 214(2), id. 25 (2014).
  47. R. S. Freedman, M. S. Marley, and K. Lodders, Astrophys. J. Supl. 174(2), 504 (2008).
  48. A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Desert, G. E. Ballester, R. Ferlet, G. Hebrard, and M. Mayor, Nature 422(6928), 143 (2003).
  49. G. B. Field, 142, 531 (1965).
  50. T. Yoneyama, Publ. Astron. Soc. Japan 25, 349 (1973).
  51. A. A. Boyarchuk, B. M. Shustov, I. S. Savanov, M. E. Sachkov, et al., Astron. Rep. 60(1), 1 (2016).
  52. B. M. Shustov, M. E. Sachkov, S. G. Sichevsky, R. N. Arkhangelsky, et al., Solar System Res. 55(7), 677 (2021).
  53. В. И. Шематович, И. Ф. Шайхисламов, А. Г. Жилкин, И. С. Саванов, Г. Н. Цуриков, Д. В. Бисикало, ФИЗМАТ 1, 33 (2023).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 The Russian Academy of Sciences