Non-thermal processes of nitrogen oxide formation during precipitation of auroral electrons into the upper atmospheres of terrestrial planets

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Nitric oxide is a potential biomarker in the N 2 -O 2 atmospheres of terrestrial exoplanets, which can be detected by space missions, including the planned launch of the Russian Spektr-UF observatory. From observations of the Earth's thermosphere in the polar regions, it is known that important sources of formation of this molecule are the precipitation of high-energy electrons into the planet's atmosphere, as well as the non-thermal processes accompanying them. In this paper the non-thermal processes of nitrogen oxide formation in the polar regions of the Earth's upper atmosphere are investigated, as well as the atmospheres of exoplanets located in the potential habitability zone of active stars. For this purpose, a numerical kinetic Monte Carlo model of the interaction of high-energy electrons with atmospheric gas has been developed; a kinetic Monte Carlo model of the interaction of suprathermal N( 4 S) atoms formed as a result of dissociation of N 2 molecules by electron impact with the surrounding gas; as well as a model of odd nitrogen chemistry with taking into account the molecular and turbulent diffusion. According to the results of calculations, it is confirmed that the process of dissociation of N 2 by an electron impact during the interaction of the stellar wind with the atmosphere of the planet is an important source of suprathermal N atoms, which contribute to a significant increase in the non-thermal formation of NO in the N 2 -O 2 atmospheres of terrestrial planets (both locally, in the case of a planet's own magnetic field, and throughout the planet's surface, in the case of its absence). Because the column concentration of NO during flares becomes larger, therefore the chances of detecting of nitric oxide biomarker in the atmospheres of the terrestrial-type exoplanets located in the potential habitability zone of active stars are also become larger.

About the authors

V. I. Shematovich

Institute of Astronomy of Russian Academy of Sciences

Author for correspondence.
Email: shematov@inasan.ru
Russian Federation, Moscow

D. V. Bisikalo

Institute of Astronomy of Russian Academy of Sciences; National Center of Physics and Mathematics

Email: shematov@inasan.ru
Russian Federation, Moscow; Sarov

G. N. Tsurikov

Institute of Astronomy of Russian Academy of Sciences

Email: shematov@inasan.ru
Russian Federation, Moscow

A. G. Zhilkin

Institute of Astronomy of Russian Academy of Sciences

Email: shematov@inasan.ru
Russian Federation, Moscow

References

  1. H. Lammer, L. Sproß, J. L. Grenfell, et al., Astrobiology 19, № 7, 927–950 (2019).
  2. L. Sproß, M. Scherf, V. I. Shematovich, et al., Astronomy Reports 65, 275–296 (2021).
  3. C. P. Johnstone, M. Güdel, H. Lammer, K. G. Kislyakova, Astron. and Astrophys. 617, № A107, 36 (2018).
  4. A. Nakayama, M. Ikoma, N. Terada, Astrophys. J. 937, № 72, 18 (2022).
  5. A. Coustenis and F. Taylor Titan: Exploring an Earthlike World (Second Edition: Series on Atmospheric, Oceanic and Planetary Physics, 4, 412, 2008).
  6. S. D. Domagal-Goldman, A. Segura, M. W. Claire, et al., Astrophys. J. 792, № 90, 15 (2014).
  7. A. Misra, V. Meadows, M. W. Claire, D. Crisp, Astrobiology 14, № 2, 67–86 (2014).
  8. E. W. Schwieterman, S. L. Olson, D. Pidhorodetska, C. T. Rein -hard, et al., Astrophys. J. 937, № 109, 22 (2022).
  9. Г. Н. Цуриков, Д. В. Бисикало, Астрон. Журн. 100, № 2, 144–165 (2023).
  10. Г. Н. Цуриков, Д. В. Бисикало, Астрон. Журн. 100, № 11, 987–1004 (2023).
  11. C. A. Barth, D. N. Baker, K. D. Mankoff, S. M. Bailey, Geophys. Res. Lett. 28, № A1, 1463–1466 (2001).
  12. C. A. Barth, K. D. Mankoff, S. M. Bailey, S. C. Solomon, J. Geophys. Res. 108, 1027–1038 (2003).
  13. C. A. Barth, S. C. Bailey, S. C. Solomon, Geophys. Res. Lett. 26, 1251–1254 (1999).
  14. J. C. Gérard, C. A. Barth, J. Geophys. Res. 82, 674–680 (1977).
  15. H. Dothe, J. W. Duff, R. H. Sharma, N. B. Wheeler, et al., J. Geophys. Res. 107, № A1, 9 (2002).
  16. C. Sætre, C. A. Barth, J. Stadsnes, J. Geophys. Res. 112, № A08306, 11 (2007).
  17. V. I. Shematovich, D. V. Bisikalo, and J. C. Gérard, Geophys. Res. Lett. 18, 1691–1693 (1991).
  18. V. I. Shematovich, D. V. Bisikalo, and J. C. Gérard, Annales Geophysicae 10, 792–801 (1992).
  19. J. C. Gérard, V. I. Shematovich, and D. V. Bisikalo, Geophys. Res. Lett. 18, 1695–1697 (1991).
  20. J.-C. Gérard, V. I. Shematovich, and D. V. Bisikalo The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory (Geophysical Monograph Series, 87, 235–242, 1995).
  21. J.-C. Gérard, D. V. Bisikalo, V. I. Shematovich, and J. W. Duff, J. Geophys. Res. 102, № A1, 285–292 (1997 ).
  22. D. E. Siskind, C. A. Barth, and R. G. Roble, J. Geophys. Res. 94, № A12, 16885–16898 (1989).
  23. D. E. Siskind, C. A. Barth, D. S. Evans, and R. G. J. Roble, Geophys. Res. 94, № A12, 16899–16911 (1989).
  24. D. Bisikalo, V. Shematovich, B. Hubert, Universe 8, 437–451 (2022).
  25. S. C. Solomon, J. Geophys. Res. 106, 107–116 (2001).
  26. S. C. Solomon, J. Geophys. Res. Space Physics 122, 7834–7848 (2017).
  27. V. I. Shematovich, D. V. Bisikalo, J.-C. Gérard, et al., J. Geophys. Res. 113, № E02011, 9 (2008).
  28. V. Shematovich, D. Bisikalo, G. Tsurikov, Atmosphere 14, № 1092, 15 (2023).
  29. D. V. Bisikalo, V. I. Shematovich, P. V. Kaygorodov, A. G. Zhil- kin, Physics Uspiekhy 64, 747–800 (2021).
  30. V. I. Shematovich, Russian Chemical Reviews 88, 1013–1045 (2019).
  31. T. Tabata, T. Shirai, M. Sataka, H. Kubo, Atom. Data and Nucl. Data Tables 92, № 3, 375–406 (2006).
  32. Y. J. Itikawa Phys. and Chem. Ref. Data 35, 31–53 (2006).
  33. Y. J. Itikawa Phys. and Chem. Ref. Data 38, 1–20 (2009).
  34. K. Anzai, H. Kato, M. Hoshino, et al., European Physical Journal D 66, № 36, 36 (2012).
  35. H. S. Porter, C. H. Jackman, A. E. S. Green, J. Chem. Phys. 65, 154–167 (1976).
  36. C. H. Jackman, R. H. Garvey, A. E. S. Green, J. Geophys. Res. 82, 5081–5090 (1977).
  37. M. Ya. Marov, V. I. Shematovich, D. V. Bisikalo, Space Science Reviews 76, 1–202 (1996).
  38. P. C. Cosby, J. Chem. Phys. 98, 9544–9553 (1993).
  39. C. W. Walter, P. C. Cosby, H. Helm, J. Chem. Phys. 99, 3553–3561 (1993).
  40. A. E. Hedin, J. Geophys. Res. 96, 1159–1172 (1991).
  41. R. A. Sultanov, N. J. Balakrishnan, Chem. Physics 124, №124321, 7 (2006).
  42. D. Bermejo-Pantaleón, B. Funke, M. López-Puertas, et al., J. Geophys. Res.: Space Physics 116, № A10, 24 (2011).
  43. L. Vejby-Christensen, D. Kella, H. B. Pedersen, and L. H. An -derson, Phys. Rev. A 57, 3627 (1998).
  44. А. Г. Жилкин, Ю. Г. Гладышева, В. И. Шематович, Д. В. Би- сикало, Астрон. Журн. 100, № 12, 1190–1209 (2023).
  45. S. D. Cohen, A. C. Hindmarsh, P. F. Dubois, Computers in physics 10, № 2, 138–143 (1996).
  46. D. Bilitza, D. Altadill, V. Truhlik, V. Shubin, et al., Space Weather 15, 418–429 (2017).
  47. S. M. Bailey, J. Geophys. Res. 107, № A8, 1205–1227 (2002) .
  48. C. A. Barth, Planet. Space Sci. 40, 315–336 (1992).
  49. P. M. Banks, G. Kockarts Aeronomy (New York: Academic Press, 430, 1973).
  50. R. G. Roble The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory (ed. by R. M. Johnson and T. L. Killeen, Geophysical Monograph, London, 1995) .
  51. D. T. Decker, B. V. Kozelov, B. Basu, et al., J. Geophys. Res. 101, 26947–26960 (1996) .
  52. R. J. Redmon, W. F. Denig, L. M. Kilcommons, K. J. Knipp, J. Geophys. Res.: Space Physics 122, № 8, 9056–9067 (2017).
  53. N. Balakrishnan, A. Dalgarno, Chemical Physics Letters 302, 485–488 (1999).
  54. E. C. Zipf, R. W. McLaughlin, Planet. Space Sci. 26, 449 (1978).
  55. W. L. Borst, E. C. Zipf, Phys. Rev. A 1, 834 (1970).
  56. F. D. Colegrove, W. B. Hanson, and F. S. Johnson, J. Geophys. Res. 70, 4931 (1965).
  57. J. Kasting, D. Whitmire, and R. Reynolds, Icarus 101, № 1, 108–128 (1993).
  58. R. K. Kopparapu, R. Ramirez, J. F. Kasting, V. Eymet, et al., Astrophys. J. 765, № 2, 16 (2013).
  59. Б. Ф. Гордиец, Ю. Н. Куликов, М. Н. Марков, М. Я. Маров, Труды ФИАН 130, 28 (1982).
  60. A. Dalgarno, Ann. Geophys. 20, 65–74 (1964).
  61. A. Dalgarno, I. D. Latimer, J. W. McConkey, Planet. Space Sci. 13, № 1008–1009 (1965).
  62. J. A. Whalen, R. R. O’Neil, R. H. Picard Handbook of Geophysics and the Space Environment (ed. A. S. Jursa, Air Force Geophysics Laboratory Hanscom AFB, MA, 12, 12-1–12-42, 1985).
  63. M. J. Seaton, J. Atmos. Terr. Phys. 4, № 6, 285–294 (1954).
  64. И. С. Саванов, Астрофизический бюллетень 76, № 2, 202–209 (2021).
  65. J. L. Linsky, M. Güdel Characterizing Stellar and Exoplanetary Environments (ed. H. Lammer, M. Khodachenko, Astrophysics and Space Science Library, Springer, 3–16, 2015).
  66. J. L. Linsky, R. Bushinsky, T. Ayres, J. Fontenla, K. France, Astrophys. J. 745, № 25, 8 (2012).
  67. I. Ribas, E. F. Guinan, M. Güdel, M. Audard, Astrophys. J. 622, № 1, 680–694 (2005).
  68. I. Ribas, G. F. Porto de Mello, L. D. Ferreira, E. Hébrard, et al., Astrophys. J. 714, № 1, 384–395 (2010).
  69. M. W. Claire, J. Sheets, M. Cohen, I. Ribas, et al., Astrophys. J. Suppl. Ser. 757, № 95, 12 (2012).
  70. M. Güdel, E. F. Guinan, S. L. Skinner, Astrophys. J. 483, 947–960 (1997).
  71. B. E. Wood, H. R. Müller, G. P. Zank, J. L. Linsky, S. Redfield, Astrophys. J. 628, L143–L146 (2005).
  72. B. E. Wood, J. L. Linsky, M. Güdel Exoplanet Host Star Radiation and Plasma Environment (ed. H. Lammer, M. Khodachenko, Characterizing Stellar and Exoplanetary Environments. Astrophysics and Space Science Library, Springer, 19–32, 2015).
  73. A. A. Vidotto, Living Reviews in Solar Physics 18, № 3, 86 (2021).
  74. M. L. Khodachenko, I. Ribas, H. Lammer, J. M. Grießmeier, et al., Astrobiology 7, № 1, 167–184 (2007).
  75. A. Cherenkov, D. Bisikalo, L. Fossati, C. Mostl, Astrophys. J. 846, № 1, 31 (2017).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 The Russian Academy of Sciences