On the possibility of studying the effect of magnetic reconnection in a laboratory astrophysical experiment using X-ray emission L-spectra of multiply charged ions

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper considers the application of X-ray spectroscopy with high spatial resolution for investigation of magnetic reconnection in laboratory astrophysical experiments carried out on laser facilities of nano- and pico-second duration at moderate laser intensity on the target <1018 W/cm2. A brief overview of commonly used experimental schemes is given. We present atomic kinetic calculations for the spectra from the L-shells of Ne- and F-like iron ions (Fe, Z = 26), which demonstrate the high sensitivity of the spectra to changes in plasma parameters. An analysis of the range of applicability of various diagnostic approaches to assessing the electron temperature and laser plasma density is carried out. It is shown that transition lines in Ne-like ions are a universal tool for measuring plasma parameters, both in the region of laser interaction with the target and in the reconnection zone.

Авторлар туралы

М. Alkhimova

Joint Institute for High Temperature of RAS

Хат алмасуға жауапты Автор.
Email: maryalkhimova@ihed.ras.ru
Ресей, Moscow

S. Makarov

Joint Institute for High Temperature of RAS

Email: maryalkhimova@ihed.ras.ru
Ресей, Moscow

I. Skobelev

Joint Institute for High Temperature of RAS

Email: maryalkhimova@ihed.ras.ru
Ресей, Moscow

S. Ryazantsev

Joint Institute for High Temperature of RAS

Email: maryalkhimova@ihed.ras.ru
Ресей, Moscow

E. Filippov

Joint Institute for High Temperature of RAS

Email: maryalkhimova@ihed.ras.ru
Ресей, Moscow

Әдебиет тізімі

  1. G. H. Miller, Opt. Eng. 43, 2841 (2004).
  2. N. Fleurot, C. Cavailler, J. L. Bourgade, Fusion Eng. Des. 74, 147–154 (2005).
  3. S. G. Garanin, F. A. Starikov, R. A. Shnyagin, Opt. Spectrosc. 114, 851–858 (2013).
  4. M. Yamada, R. Kulsrud, H. Ji, Rev. Mod. Phys. 82, 603–664 (2010).
  5. P. Helander, L.-G. Eriksson, F. Andersson, Plasma Phys. Control. Fusion. 44, B247–B262 (2002).
  6. J. T. Gosling, Space Sci. Rev. 172, 187–200 (2012).
  7. Somov B. V., Plasma Astrophysics, Part II: Reconnection and Flares (Springer, 2006).
  8. M. Bárta, M. Karlický, R. Žemlička, Sol. Phys. 253, 173–189 (2008).
  9. X. Cheng, J. Zhang, Y. Liu, M. D. Ding, Astrophys. J. 732, L25 (2011).
  10. X. Cheng, Y. Li, L. F. Wan, M. D. Ding, P. F. Chen, J. Zhang, J. J. Liu, Astrophys. J. 866, 64 (2018).
  11. P. Pagano, D. H. Mackay, S. Poedts, Astron. and Astrophys. 554, A77 (2013).
  12. J. Lin, Y. ‐K. Ko, L. Sui, J. C. Raymond, G. A. Stenborg, Y. Jiang, S. Zhao, S. Mancuso, Astrophys. J. 622, 1251–1264 (2005).
  13. L. K. S. Daldorff, J. E. Leake, J. A. Klimchuk, Astrophys. J. 927, 196 (2022).
  14. А.Retinò, D. Sundkvist, A. Vaivads, F. Mozer, M. André, C. J. Owen, Nat. Phys. 3, 235–238 (2007).
  15. P. Louarn, N. Andre, C. M. Jackman, S. Kasahara, E. A. Kronberg, M. F. Vogt, Space Sci. Rev. 187, 181–227 (2015).
  16. J. Varela, V. Réville, A. S. Brun, P. Zarka, F. Pantellini, Astron. and Astrophys. 616, A182 (2018).
  17. V. Semenov, S. Dyadechkin, B. Punsly, Science 80, 305, 978–980 (2004).
  18. Y. Lyubarsky, Astrophys. J. 897, 1 (2020).
  19. M. Lyutikov, Monthly Not. Roy. Astron. Soc. 346, 540–554 (2003).
  20. M. Hesse, P. A. Cassak, J. Geophys. Res. Sp. Phys., in press, doi: 10.1029/2018JA025935.
  21. C. T. Russell, M. A. Saunders, J. L. Phillips, J. A. Fedder, J. Geophys. Res. 91, 1417 (1986).
  22. O. Price, G. H. Jones, J. Morrill, M. Owens, K. Battams, H. Morgan, M. Drückmuller, S. Deiries, Icarus 319, 540–557 (2019).
  23. Л. В. Франк, А.Г., Артемьев, А.В., Зеленый, ЖЭТФ 150, 807–825 (2016).
  24. S. Y. Bogdanov, G. V. Dreǐden, V. S. Markov, G. V. Ostrov-skaya, A. G. Frank, Plasma Phys. Reports 32, 1034–1046 (2006).
  25. N. Katz, J. Egedal, W. Fox, A. Le, J. Bonde, A. Vrublevskis, Phys. Rev. Lett. 104, 255004 (2010).
  26. W. Fox, F. Sciortino, A. v. Stechow, J. Jara-Almonte, J. Yoo, H. Ji, M. Yamada, Phys. Rev. Lett. 118, 125002 (2017).
  27. J. D. Hare, L. Suttle, S. V. Lebedev, N. F. Loureiro, et L., Phys. Rev. Lett. 118, 085001 (2017).
  28. А.Ishizawa, R. Horiuchi, Phys. Rev. Lett. 95, 045003 (2005).
  29. M. Hesse, T. Neukirch, K. Schindler, M. Kuznetsova, S. Zenitani, Space Sci. Rev. 160, 3–23 (2011).
  30. S. V Bulanov, Plasma Phys. Control. Fusion. 59, 014029 (2017).
  31. K. Burdonov, A. Fazzini, V. Lelasseux, J. Albrecht, et al., Matter Radiat. Extrem. 6, doi: 10.1063/5.0065138 (2021).
  32. А. Г. Франк, Успехи физических наук. 53, 941–947 (2010).
  33. Y. H. Liu, P. Cassak, X. Li, M. Hesse, S. C. Lin, K. Genestreti, Commun. Phys. 2022 51, 5, 1–9 (2022).
  34. J. Qiu, W. Liu, N. Hill, M. Kazachenko, Astrophys. J. 725, 319–330 (2010).
  35. K. J. Trattner, J. S. Mulcock, S. M. Petrinec, S. A. Fuselier, Geophys. Res. Lett. 34, L03108 (2007).
  36. M. Yamada, J. Yoo, J. Jara-Almonte, H. Ji, R. M. Kulsrud, C. E. Myers, Nat. Commun. 5, doi: 10.1038/ncomms5774 (2014).
  37. É. Falize, C. Michaut, S. Bouquet, Astrophys. J. 730, 96 (2011).
  38. L. Willingale, P. M. Nilson, M. C. Kaluza, A. E. Dangor, et al., Phys. Plasmas. 17, doi: 10.1063/1.3377787 (2010).
  39. S. Bolaños, A. Sladkov, R. Smets, S. N. Chen, et al., J. Fuchs, Nat. Commun. 13, 6426 (2022).
  40. P. M. Nilson, L. Willingale, M. C. Kaluza, C. Kamperidis, et al., Phys. Rev. Lett. 97, 255001 (2006).
  41. B. K. F. Young, A. L. Osterheld, D. F. Price, R. Shepherd, et al., Rev. Sci. Instrum. 69, 4049–4053 (1998).
  42. W. Fox, A. Bhattacharjee, K. Germaschewski, Phys. Rev. Lett. 106, 215003 (2011).
  43. W. Fox, A. Bhattacharjee, K. Germaschewski, Phys. Plasmas. 19, doi: 10.1063/1.3694119 (2012).
  44. M. Øieroset, T. D. Phan, R. Ergun, N. Ahmadi, et al., Phys. Plasmas. 28, doi: 10.1063/5.0072182 (2021).
  45. D. I. Pontin, E. R. Priest Magnetic reconnection: MHD theory and modelling (Springer International Publishing; vol. 19, 2022).
  46. Y. Kuramitsu, T. Moritaka, Y. Sakawa, T. Morita, et al., Nat. Commun. 9, 5109 (2018).
  47. W. Liu, Q. Chen, V. Petrosian, Astrophys. J. 767, 168 (2013).
  48. G. Fiksel, W. Fox, A. Bhattacharjee, D. H. Barnak, P.- Y. Chang, K. Germaschewski, S. X. Hu, P. M. Nilson, Phys. Rev. Lett. 113, 105003 (2014).
  49. J. Zhong, Y. Li, X. Wang, J. Wang, Q. Dong, et al., Nat. Phys. 6, 984–987 (2010).
  50. W. Daughton, J. Scudder, H. Karimabadi, Phys. Plasmas. 13, doi: 10.1063/1.2218817 (2006).
  51. F. Ebrahimi, R. Raman, Phys. Rev. Lett. 114, 205003 (2015).
  52. K. Sakai, T. Moritaka, T. Morita, K. Tomita, et al., Sci. Rep. 12, 10921 (2022).
  53. Y. Kuramitsu, Y. Sakawa, J. N. Waugh, C. D. Gregory, T. Morita, S. Dono, H. Aoki, H. Tanji, B. Loupias, M. Koenig, N. Woolsey, H. Takabe, Astrophys. J. 707, L137–L141 (2009).
  54. P. M. Nilson, L. Willingale, M. C. Kaluza, C. Kamperidis, et al., Phys. Plasmas 15, doi: 10.1063/1.2966115 (2008).
  55. Q.-L. Dong, S.-J. Wang, Q.-M. Lu, C. Huang, et al., Phys. Rev. Lett. 108, 215001 (2012).
  56. C. K. Li, F. H. Séguin, J. A. Frenje, J. R. Rygg, R. D. Petrasso, R. P. J. Town, O. L. Landen, J. P. Knauer, V. A. Smalyuk, Phys. Rev. Lett. 99, 055001 (2007).
  57. X. X. Pei, J. Y. Zhong, Y. Sakawa, Z. Zhang, et al., Phys. Plasmas 23, doi: 10.1063/1.4944928 (2016).
  58. А.Chien, L. Gao, S. Zhang, H. Ji, E. G. Blackman, et al., Nat. Phys. 192, 19, 254–262 (2023).
  59. J. P. Geindre, P. Audebert, A. Rousse, J. C. Gauthier, A. Y. Faenov, T. A. Pikuz, S. A. Pikuz, T. A. Shelkovenko, Phys. Scr. 53, 645–647 (1996).
  60. А.Y. Faenov, S. A. Pikuz, A. I. Erko, B. A. Bryunetkin, et al., Phys. Scr. 50, 333–338 (1994).
  61. S. A. Pikuz, I. Y. Skobelev, M. A. Alkhimova, G. V. Pokrovskii, et al., JETP Lett. 105, 13–17 (2017).
  62. S. N. Ryazantsev, A. S. Martynenko, M. V Sedov, I. Y. Skobelev, et al., Plasma Phys. Control. Fusion. 64, 105016 (2022).
  63. M. A. Alkhimova, A. Y. Faenov, I. Y. Skobelev, T. A. Pikuz, et al., Opt. Express. 25, 29501 (2017).
  64. E. D. Filippov, K. F. Burdonov, T. A. Pikuz, I. Y. Skobelev, Symmetry (Basel) 14, 1–21 (2022).
  65. E. D. Filippov, S. S. Makarov, K. F. Burdonov, W. Yao, et al., Sci. Rep. 11, 8180 (2021).
  66. E. D. Filippov, M. Khan, A. Tentori, P. Gajdos, et al., Matter Radiat. Extrem. 8, 065602 (2023).
  67. V. M. Dyakin, A. I. Magunov, T. A. Pikuz, I. Y. Skobelev, A. Y. Faenov, J. Wolowski, E. Woryna, P. Parys, T. Pisarczyk, Quantum Electron. 25, 690–694 (1995).
  68. C. Y. Chien, J. C. Kieffer, O. Peyrusse, D. Gilles, M. Chaker, J. S. Coe, G. Mourou, Y. Beaudoin, Opt. Lett. 18, 1535 (1993).
  69. Z. Jiang, J. C. Kieffer, J. P. Matte, M. Chaker, O. Peyrusse, D. Gilles, G. Korn, A. Maksimchuk, S. Coe, G. Mourou, Phys. Plasmas 2, 1702–1711 (1995).
  70. V. A. Boiko, A. V. Vinogradov, S. A. Pikuz, I. Y. Skobelev, A. Y. Faenov, J. Sov. Laser Res. 6, 85–290 (1985).
  71. C. Kaur, S. Chaurasia, N. Singh, J. Pasley, S. Aggarwal, M. Mohan, Phys. Plasmas 26, doi: 10.1063/1.5051758 (2019).
  72. G. V. Brown, P. Beiersdorfer, D. A. Liedahl, K. Widmann, S. M. Kahn, E. J. Clothiaux, Astrophys. J. Suppl. Ser. 140, doi: 10.1086/339374 (2002).
  73. E. V. Marley, D. A. Liedahl, M. B. Schneider, R. F. Heeter, et al., Rev. Sci. Instrum. 89, 1–5 (2018).
  74. J. J. MacFarlane, I. E. Golovkin, P. R. Woodruff, D. R. Welch, B. V. Oliver, T. A. Melhorn, R. B. Campbell, T. A. Mehlhorn, R. B. Campbell Proc. Inert. Fusion Sci. Appl. (American Nucl. Soc. La Grange Park, IL, 1–4, 2003).
  75. E. D. Filippov, I. Y. Skobelev, G. Revet, S. N. Chen, B. Khiar, A. Ciardi, D. Khaghani, D. P. Higginson, S. A. Pikuz, J. Fuchs, Matter Radiat. Extrem. 4, doi: 10.1063/1.5124350 (2019).
  76. B. Khiar, G. Revet, A. Ciardi, K. Burdonov, et al., Phys. Rev. Lett. 123, 205001 (2019).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© The Russian Academy of Sciences, 2024