On the possibility of studying the effect of magnetic reconnection in a laboratory astrophysical experiment using X-ray emission L-spectra of multiply charged ions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper considers the application of X-ray spectroscopy with high spatial resolution for investigation of magnetic reconnection in laboratory astrophysical experiments carried out on laser facilities of nano- and pico-second duration at moderate laser intensity on the target <1018 W/cm2. A brief overview of commonly used experimental schemes is given. We present atomic kinetic calculations for the spectra from the L-shells of Ne- and F-like iron ions (Fe, Z = 26), which demonstrate the high sensitivity of the spectra to changes in plasma parameters. An analysis of the range of applicability of various diagnostic approaches to assessing the electron temperature and laser plasma density is carried out. It is shown that transition lines in Ne-like ions are a universal tool for measuring plasma parameters, both in the region of laser interaction with the target and in the reconnection zone.

About the authors

М. А. Alkhimova

Joint Institute for High Temperature of RAS

Author for correspondence.
Email: maryalkhimova@ihed.ras.ru
Russian Federation, Moscow

S. S. Makarov

Joint Institute for High Temperature of RAS

Email: maryalkhimova@ihed.ras.ru
Russian Federation, Moscow

I. Yu. Skobelev

Joint Institute for High Temperature of RAS

Email: maryalkhimova@ihed.ras.ru
Russian Federation, Moscow

S. N. Ryazantsev

Joint Institute for High Temperature of RAS

Email: maryalkhimova@ihed.ras.ru
Russian Federation, Moscow

E. D. Filippov

Joint Institute for High Temperature of RAS

Email: maryalkhimova@ihed.ras.ru
Russian Federation, Moscow

References

  1. G. H. Miller, Opt. Eng. 43, 2841 (2004).
  2. N. Fleurot, C. Cavailler, J. L. Bourgade, Fusion Eng. Des. 74, 147–154 (2005).
  3. S. G. Garanin, F. A. Starikov, R. A. Shnyagin, Opt. Spectrosc. 114, 851–858 (2013).
  4. M. Yamada, R. Kulsrud, H. Ji, Rev. Mod. Phys. 82, 603–664 (2010).
  5. P. Helander, L.-G. Eriksson, F. Andersson, Plasma Phys. Control. Fusion. 44, B247–B262 (2002).
  6. J. T. Gosling, Space Sci. Rev. 172, 187–200 (2012).
  7. Somov B. V., Plasma Astrophysics, Part II: Reconnection and Flares (Springer, 2006).
  8. M. Bárta, M. Karlický, R. Žemlička, Sol. Phys. 253, 173–189 (2008).
  9. X. Cheng, J. Zhang, Y. Liu, M. D. Ding, Astrophys. J. 732, L25 (2011).
  10. X. Cheng, Y. Li, L. F. Wan, M. D. Ding, P. F. Chen, J. Zhang, J. J. Liu, Astrophys. J. 866, 64 (2018).
  11. P. Pagano, D. H. Mackay, S. Poedts, Astron. and Astrophys. 554, A77 (2013).
  12. J. Lin, Y. ‐K. Ko, L. Sui, J. C. Raymond, G. A. Stenborg, Y. Jiang, S. Zhao, S. Mancuso, Astrophys. J. 622, 1251–1264 (2005).
  13. L. K. S. Daldorff, J. E. Leake, J. A. Klimchuk, Astrophys. J. 927, 196 (2022).
  14. А.Retinò, D. Sundkvist, A. Vaivads, F. Mozer, M. André, C. J. Owen, Nat. Phys. 3, 235–238 (2007).
  15. P. Louarn, N. Andre, C. M. Jackman, S. Kasahara, E. A. Kronberg, M. F. Vogt, Space Sci. Rev. 187, 181–227 (2015).
  16. J. Varela, V. Réville, A. S. Brun, P. Zarka, F. Pantellini, Astron. and Astrophys. 616, A182 (2018).
  17. V. Semenov, S. Dyadechkin, B. Punsly, Science 80, 305, 978–980 (2004).
  18. Y. Lyubarsky, Astrophys. J. 897, 1 (2020).
  19. M. Lyutikov, Monthly Not. Roy. Astron. Soc. 346, 540–554 (2003).
  20. M. Hesse, P. A. Cassak, J. Geophys. Res. Sp. Phys., in press, doi: 10.1029/2018JA025935.
  21. C. T. Russell, M. A. Saunders, J. L. Phillips, J. A. Fedder, J. Geophys. Res. 91, 1417 (1986).
  22. O. Price, G. H. Jones, J. Morrill, M. Owens, K. Battams, H. Morgan, M. Drückmuller, S. Deiries, Icarus 319, 540–557 (2019).
  23. Л. В. Франк, А.Г., Артемьев, А.В., Зеленый, ЖЭТФ 150, 807–825 (2016).
  24. S. Y. Bogdanov, G. V. Dreǐden, V. S. Markov, G. V. Ostrov-skaya, A. G. Frank, Plasma Phys. Reports 32, 1034–1046 (2006).
  25. N. Katz, J. Egedal, W. Fox, A. Le, J. Bonde, A. Vrublevskis, Phys. Rev. Lett. 104, 255004 (2010).
  26. W. Fox, F. Sciortino, A. v. Stechow, J. Jara-Almonte, J. Yoo, H. Ji, M. Yamada, Phys. Rev. Lett. 118, 125002 (2017).
  27. J. D. Hare, L. Suttle, S. V. Lebedev, N. F. Loureiro, et L., Phys. Rev. Lett. 118, 085001 (2017).
  28. А.Ishizawa, R. Horiuchi, Phys. Rev. Lett. 95, 045003 (2005).
  29. M. Hesse, T. Neukirch, K. Schindler, M. Kuznetsova, S. Zenitani, Space Sci. Rev. 160, 3–23 (2011).
  30. S. V Bulanov, Plasma Phys. Control. Fusion. 59, 014029 (2017).
  31. K. Burdonov, A. Fazzini, V. Lelasseux, J. Albrecht, et al., Matter Radiat. Extrem. 6, doi: 10.1063/5.0065138 (2021).
  32. А. Г. Франк, Успехи физических наук. 53, 941–947 (2010).
  33. Y. H. Liu, P. Cassak, X. Li, M. Hesse, S. C. Lin, K. Genestreti, Commun. Phys. 2022 51, 5, 1–9 (2022).
  34. J. Qiu, W. Liu, N. Hill, M. Kazachenko, Astrophys. J. 725, 319–330 (2010).
  35. K. J. Trattner, J. S. Mulcock, S. M. Petrinec, S. A. Fuselier, Geophys. Res. Lett. 34, L03108 (2007).
  36. M. Yamada, J. Yoo, J. Jara-Almonte, H. Ji, R. M. Kulsrud, C. E. Myers, Nat. Commun. 5, doi: 10.1038/ncomms5774 (2014).
  37. É. Falize, C. Michaut, S. Bouquet, Astrophys. J. 730, 96 (2011).
  38. L. Willingale, P. M. Nilson, M. C. Kaluza, A. E. Dangor, et al., Phys. Plasmas. 17, doi: 10.1063/1.3377787 (2010).
  39. S. Bolaños, A. Sladkov, R. Smets, S. N. Chen, et al., J. Fuchs, Nat. Commun. 13, 6426 (2022).
  40. P. M. Nilson, L. Willingale, M. C. Kaluza, C. Kamperidis, et al., Phys. Rev. Lett. 97, 255001 (2006).
  41. B. K. F. Young, A. L. Osterheld, D. F. Price, R. Shepherd, et al., Rev. Sci. Instrum. 69, 4049–4053 (1998).
  42. W. Fox, A. Bhattacharjee, K. Germaschewski, Phys. Rev. Lett. 106, 215003 (2011).
  43. W. Fox, A. Bhattacharjee, K. Germaschewski, Phys. Plasmas. 19, doi: 10.1063/1.3694119 (2012).
  44. M. Øieroset, T. D. Phan, R. Ergun, N. Ahmadi, et al., Phys. Plasmas. 28, doi: 10.1063/5.0072182 (2021).
  45. D. I. Pontin, E. R. Priest Magnetic reconnection: MHD theory and modelling (Springer International Publishing; vol. 19, 2022).
  46. Y. Kuramitsu, T. Moritaka, Y. Sakawa, T. Morita, et al., Nat. Commun. 9, 5109 (2018).
  47. W. Liu, Q. Chen, V. Petrosian, Astrophys. J. 767, 168 (2013).
  48. G. Fiksel, W. Fox, A. Bhattacharjee, D. H. Barnak, P.- Y. Chang, K. Germaschewski, S. X. Hu, P. M. Nilson, Phys. Rev. Lett. 113, 105003 (2014).
  49. J. Zhong, Y. Li, X. Wang, J. Wang, Q. Dong, et al., Nat. Phys. 6, 984–987 (2010).
  50. W. Daughton, J. Scudder, H. Karimabadi, Phys. Plasmas. 13, doi: 10.1063/1.2218817 (2006).
  51. F. Ebrahimi, R. Raman, Phys. Rev. Lett. 114, 205003 (2015).
  52. K. Sakai, T. Moritaka, T. Morita, K. Tomita, et al., Sci. Rep. 12, 10921 (2022).
  53. Y. Kuramitsu, Y. Sakawa, J. N. Waugh, C. D. Gregory, T. Morita, S. Dono, H. Aoki, H. Tanji, B. Loupias, M. Koenig, N. Woolsey, H. Takabe, Astrophys. J. 707, L137–L141 (2009).
  54. P. M. Nilson, L. Willingale, M. C. Kaluza, C. Kamperidis, et al., Phys. Plasmas 15, doi: 10.1063/1.2966115 (2008).
  55. Q.-L. Dong, S.-J. Wang, Q.-M. Lu, C. Huang, et al., Phys. Rev. Lett. 108, 215001 (2012).
  56. C. K. Li, F. H. Séguin, J. A. Frenje, J. R. Rygg, R. D. Petrasso, R. P. J. Town, O. L. Landen, J. P. Knauer, V. A. Smalyuk, Phys. Rev. Lett. 99, 055001 (2007).
  57. X. X. Pei, J. Y. Zhong, Y. Sakawa, Z. Zhang, et al., Phys. Plasmas 23, doi: 10.1063/1.4944928 (2016).
  58. А.Chien, L. Gao, S. Zhang, H. Ji, E. G. Blackman, et al., Nat. Phys. 192, 19, 254–262 (2023).
  59. J. P. Geindre, P. Audebert, A. Rousse, J. C. Gauthier, A. Y. Faenov, T. A. Pikuz, S. A. Pikuz, T. A. Shelkovenko, Phys. Scr. 53, 645–647 (1996).
  60. А.Y. Faenov, S. A. Pikuz, A. I. Erko, B. A. Bryunetkin, et al., Phys. Scr. 50, 333–338 (1994).
  61. S. A. Pikuz, I. Y. Skobelev, M. A. Alkhimova, G. V. Pokrovskii, et al., JETP Lett. 105, 13–17 (2017).
  62. S. N. Ryazantsev, A. S. Martynenko, M. V Sedov, I. Y. Skobelev, et al., Plasma Phys. Control. Fusion. 64, 105016 (2022).
  63. M. A. Alkhimova, A. Y. Faenov, I. Y. Skobelev, T. A. Pikuz, et al., Opt. Express. 25, 29501 (2017).
  64. E. D. Filippov, K. F. Burdonov, T. A. Pikuz, I. Y. Skobelev, Symmetry (Basel) 14, 1–21 (2022).
  65. E. D. Filippov, S. S. Makarov, K. F. Burdonov, W. Yao, et al., Sci. Rep. 11, 8180 (2021).
  66. E. D. Filippov, M. Khan, A. Tentori, P. Gajdos, et al., Matter Radiat. Extrem. 8, 065602 (2023).
  67. V. M. Dyakin, A. I. Magunov, T. A. Pikuz, I. Y. Skobelev, A. Y. Faenov, J. Wolowski, E. Woryna, P. Parys, T. Pisarczyk, Quantum Electron. 25, 690–694 (1995).
  68. C. Y. Chien, J. C. Kieffer, O. Peyrusse, D. Gilles, M. Chaker, J. S. Coe, G. Mourou, Y. Beaudoin, Opt. Lett. 18, 1535 (1993).
  69. Z. Jiang, J. C. Kieffer, J. P. Matte, M. Chaker, O. Peyrusse, D. Gilles, G. Korn, A. Maksimchuk, S. Coe, G. Mourou, Phys. Plasmas 2, 1702–1711 (1995).
  70. V. A. Boiko, A. V. Vinogradov, S. A. Pikuz, I. Y. Skobelev, A. Y. Faenov, J. Sov. Laser Res. 6, 85–290 (1985).
  71. C. Kaur, S. Chaurasia, N. Singh, J. Pasley, S. Aggarwal, M. Mohan, Phys. Plasmas 26, doi: 10.1063/1.5051758 (2019).
  72. G. V. Brown, P. Beiersdorfer, D. A. Liedahl, K. Widmann, S. M. Kahn, E. J. Clothiaux, Astrophys. J. Suppl. Ser. 140, doi: 10.1086/339374 (2002).
  73. E. V. Marley, D. A. Liedahl, M. B. Schneider, R. F. Heeter, et al., Rev. Sci. Instrum. 89, 1–5 (2018).
  74. J. J. MacFarlane, I. E. Golovkin, P. R. Woodruff, D. R. Welch, B. V. Oliver, T. A. Melhorn, R. B. Campbell, T. A. Mehlhorn, R. B. Campbell Proc. Inert. Fusion Sci. Appl. (American Nucl. Soc. La Grange Park, IL, 1–4, 2003).
  75. E. D. Filippov, I. Y. Skobelev, G. Revet, S. N. Chen, B. Khiar, A. Ciardi, D. Khaghani, D. P. Higginson, S. A. Pikuz, J. Fuchs, Matter Radiat. Extrem. 4, doi: 10.1063/1.5124350 (2019).
  76. B. Khiar, G. Revet, A. Ciardi, K. Burdonov, et al., Phys. Rev. Lett. 123, 205001 (2019).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 The Russian Academy of Sciences