A method for estimating the number of regolith particles in a dust cloud in a discharge initiated by gyrotron radiation
- Autores: Sokolov A.S.1, Gayanova Т.E.1, Kozak А.К.1, Malakhov D.V.1, Nugaev I.R.1, Kharlachev D.Е.1, Stepakhin V.D.1
-
Afiliações:
- Prokhorov General Physics Institute of the Russian Academy of Sciences
- Edição: Volume 101, Nº 4 (2024)
- Páginas: 348-354
- Seção: Articles
- URL: https://rjmseer.com/0004-6299/article/view/647608
- DOI: https://doi.org/10.31857/S0004629924040053
- EDN: https://elibrary.ru/KFPXTF
- ID: 647608
Citar
Resumo
The article proposes a new method for estimating the number of particles in experiments on modeling the interaction of cosmic and lunar dust with the surface of spacecraft. The experiments are based on the creation of a dusty plasma cloud, when exposed to radiation from a powerful pulsed gyrotron on a substance simulating cosmic or lunar dust. This approach was tested using a lunar regolith simulator. The dynamics of particles in dust clouds obtained as a result of microwave discharge is analyzed using the ImageJ program.
Palavras-chave
Sobre autores
A. Sokolov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: dmc63@yandex.ru
Rússia, Moscow
Т. Gayanova
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: dmc63@yandex.ru
Rússia, Moscow
А. Kozak
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: dmc63@yandex.ru
Rússia, Moscow
D. Malakhov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: dmc63@yandex.ru
Rússia, Moscow
I. Nugaev
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: dmc63@yandex.ru
Rússia, Moscow
D. Kharlachev
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: dmc63@yandex.ru
Rússia, Moscow
V. Stepakhin
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: dmc63@yandex.ru
Rússia, Moscow
Bibliografia
- T. E. Gayanova, E. V. Voronova, S. V. Kuznetsov, E. A. Obraztsova, N.N. Skvortsova, A. S. Sokolov, I. R. Nugaev and V.D. Stepakhin, High Energy Chem. 57, 1, 53 (2023).
- N. S. Akhmadullina, N. N. Skvortsova, E. A. Obraztsova, V. D. Stepakhin et al., Chem. Phys. 516, 63 (2019).
- S. I. Popel, L. M. Zelenyi, A. P. Golub and A. Yu. Dubinskii, Planet. Space Sci. 156, 71 (2018).
- И. А. Кузнецов, А. В. Захаров, Л. М. Зеленый, С. И. Попель и др., Астрон. журн. 100, 1, 41 (2023).
- S. I. Popel, A. P. Golub’, A. V. Zakharov, and L. M. Zelenyi, Plasma Phys. Rep. 46 (3), 265 (2020).
- J. Williams, Journal of Plasma Physics 82(03) (2016).
- Y. Zeng, Zh. Ma, Y. Feng, Review of Scientific Instruments, 93 (3) (2022).
- Н. Н. Скворцова, В. Д. Степахин, Д. В. Малахов, Л. В. Колик, Е. М. Кончеков, Е. А. Образцова, А. С. Соколов, А. А. Сорокин, Н. К. Харчев и О. Н. Шишилов, Патент №2727958 Российская Федерация, рег. 28 июля 2020 г.
- Г. М. Батанов, Н. К. Бережецкая, В. Д. Борзосеков, Л. В. Колики др., Успехи прикладной физики 1, 5, 564 (2013).
- А. С. Соколов, Д. В. Малахов и Н.Н. Скворцова, Инженерная физика 11, 3 (2018).
- М. В. Тригуб, Д. В. Малахов, В. Д. Степахин, Г. С. Евтушенко, Д. А. Балабанов и Н. Н. Скворцова, Оптика атмосферы и океана 33, 3, 199 (2020).
- А. А. Летунов, Н. Н. Скворцова, И. Г. Рябикина, Г. М. Батанов, и др., Инженерная физика 10, 36 (2013).
- E.V. Voronova, A. V. Knyazev, A. A. Letunov, V. P. Logvinenko, N. N. Skvortsova, and V. D. Stepakhin, Physics of Atomic Nuclei. 84, 1761 (2021).
- ImageJ Independent Platform, https://imagej.nih.gov/ij/
Arquivos suplementares
