A method for estimating the number of regolith particles in a dust cloud in a discharge initiated by gyrotron radiation
- Authors: Sokolov A.S.1, Gayanova Т.E.1, Kozak А.К.1, Malakhov D.V.1, Nugaev I.R.1, Kharlachev D.Е.1, Stepakhin V.D.1
-
Affiliations:
- Prokhorov General Physics Institute of the Russian Academy of Sciences
- Issue: Vol 101, No 4 (2024)
- Pages: 348-354
- Section: Articles
- URL: https://rjmseer.com/0004-6299/article/view/647608
- DOI: https://doi.org/10.31857/S0004629924040053
- EDN: https://elibrary.ru/KFPXTF
- ID: 647608
Cite item
Abstract
The article proposes a new method for estimating the number of particles in experiments on modeling the interaction of cosmic and lunar dust with the surface of spacecraft. The experiments are based on the creation of a dusty plasma cloud, when exposed to radiation from a powerful pulsed gyrotron on a substance simulating cosmic or lunar dust. This approach was tested using a lunar regolith simulator. The dynamics of particles in dust clouds obtained as a result of microwave discharge is analyzed using the ImageJ program.
Keywords
About the authors
A. S. Sokolov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Author for correspondence.
Email: dmc63@yandex.ru
Russian Federation, Moscow
Т. E. Gayanova
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: dmc63@yandex.ru
Russian Federation, Moscow
А. К. Kozak
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: dmc63@yandex.ru
Russian Federation, Moscow
D. V. Malakhov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: dmc63@yandex.ru
Russian Federation, Moscow
I. R. Nugaev
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: dmc63@yandex.ru
Russian Federation, Moscow
D. Е. Kharlachev
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: dmc63@yandex.ru
Russian Federation, Moscow
V. D. Stepakhin
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: dmc63@yandex.ru
Russian Federation, Moscow
References
- T. E. Gayanova, E. V. Voronova, S. V. Kuznetsov, E. A. Obraztsova, N.N. Skvortsova, A. S. Sokolov, I. R. Nugaev and V.D. Stepakhin, High Energy Chem. 57, 1, 53 (2023).
- N. S. Akhmadullina, N. N. Skvortsova, E. A. Obraztsova, V. D. Stepakhin et al., Chem. Phys. 516, 63 (2019).
- S. I. Popel, L. M. Zelenyi, A. P. Golub and A. Yu. Dubinskii, Planet. Space Sci. 156, 71 (2018).
- И. А. Кузнецов, А. В. Захаров, Л. М. Зеленый, С. И. Попель и др., Астрон. журн. 100, 1, 41 (2023).
- S. I. Popel, A. P. Golub’, A. V. Zakharov, and L. M. Zelenyi, Plasma Phys. Rep. 46 (3), 265 (2020).
- J. Williams, Journal of Plasma Physics 82(03) (2016).
- Y. Zeng, Zh. Ma, Y. Feng, Review of Scientific Instruments, 93 (3) (2022).
- Н. Н. Скворцова, В. Д. Степахин, Д. В. Малахов, Л. В. Колик, Е. М. Кончеков, Е. А. Образцова, А. С. Соколов, А. А. Сорокин, Н. К. Харчев и О. Н. Шишилов, Патент №2727958 Российская Федерация, рег. 28 июля 2020 г.
- Г. М. Батанов, Н. К. Бережецкая, В. Д. Борзосеков, Л. В. Колики др., Успехи прикладной физики 1, 5, 564 (2013).
- А. С. Соколов, Д. В. Малахов и Н.Н. Скворцова, Инженерная физика 11, 3 (2018).
- М. В. Тригуб, Д. В. Малахов, В. Д. Степахин, Г. С. Евтушенко, Д. А. Балабанов и Н. Н. Скворцова, Оптика атмосферы и океана 33, 3, 199 (2020).
- А. А. Летунов, Н. Н. Скворцова, И. Г. Рябикина, Г. М. Батанов, и др., Инженерная физика 10, 36 (2013).
- E.V. Voronova, A. V. Knyazev, A. A. Letunov, V. P. Logvinenko, N. N. Skvortsova, and V. D. Stepakhin, Physics of Atomic Nuclei. 84, 1761 (2021).
- ImageJ Independent Platform, https://imagej.nih.gov/ij/
Supplementary files
