Genomic DNA polymorphism in Myrica gale (Myricaceae) in the Lebyazhiy state Nature Reserve (the southern coast of the gulf of Finland)
- Authors: Semicheva O.A.1,2, Galaktionova U.A.1,2, Bolshakov V.N.1, Romanovich A.E.2, Tikhodeeva M.Y.2, Tikhodeyev O.N.2
-
Affiliations:
- Vega Ltd, Alkor Bio Group
- Saint-Petersburg State University
- Issue: Vol 109, No 1 (2024)
- Pages: 67-82
- Section: COMMUNICATIONS
- URL: https://rjmseer.com/0006-8136/article/view/666383
- DOI: https://doi.org/10.31857/S0006813624010053
- EDN: https://elibrary.ru/EXQPZP
- ID: 666383
Cite item
Abstract
The analysis of genomic DNA polymorphism is one of widely used approaches for studying the genetic structure of natural populations. It has been successfully applied to various plants. However, many species have not yet been studied, which is primarily due to methodological difficulties in isolating well-purified and non-degraded genomic DNA. These difficulties are due to the fact that plants possess numerous bioorganic compounds (polysaccharides, polyphenols, lipids, etc.) that contaminate DNA and significantly reduce its quality. Such species include marsh waxweed (Myrica gale L.), a perennial sub-Atlantic shrub with presumably vegetative propagation (in nature, waxweed seedlings are quite rare). We developed a simple protocol for isolation of high-quality genomic DNA from waxweed leaves and performed AFLP analysis of 42 plants of this species from three subpopulations in the Lebyazhiy Nature Reserve. Using three primer pairs, we isolated 22 amplification fragments, 8 of which were monomorphic. For the remaining 14 fragments, the average level of their polymorphism was low: depending on the subpopulation studied, it varied from 0.079 to 0.129. As shown by our analysis, all three studied subpopulations are polymorphic with a predominance of two common AFLP-genotypes. The corresponding plants are apparently the vegetative descendants of the founders. The rare AFLP-genotypes (represented by just one or two plants; a total of 12 such genotypes were identified) are likely the result of mutational and recombination processes. Our data give evidence that in the life cycle and dispersal of waxweed, the role of sexual reproduction is also noticeable.
Full Text

About the authors
O. A. Semicheva
Vega Ltd, Alkor Bio Group; Saint-Petersburg State University
Email: tikhodeyev@mail.ru
Russian Federation, 192148, St. Petersburg, Zheleznodorozhny Ave., 40а; 199034, St. Petersburg, University Emb., 7/9/11
U. A. Galaktionova
Vega Ltd, Alkor Bio Group; Saint-Petersburg State University
Email: tikhodeyev@mail.ru
Russian Federation, 192148, St. Petersburg, Zheleznodorozhny Ave., 40а; 199034, St. Petersburg, University Emb., 7/9/11
V. N. Bolshakov
Vega Ltd, Alkor Bio Group
Email: tikhodeyev@mail.ru
Russian Federation, 192148, St. Petersburg, Zheleznodorozhny Ave., 40а
A. E. Romanovich
Saint-Petersburg State University
Email: tikhodeyev@mail.ru
Russian Federation, 199034, St. Petersburg, University Emb., 7/9/11
M. Yu. Tikhodeeva
Saint-Petersburg State University
Email: tikhodeyev@mail.ru
Russian Federation, 199034, St. Petersburg, University Emb., 7/9/11
O. N. Tikhodeyev
Saint-Petersburg State University
Author for correspondence.
Email: o.tihodeev@spbu.ru
Russian Federation, 199034, St. Petersburg, University Emb., 7/9/11
References
- Aggarwal G., Edhigalla P., Walia P. 2022. A comprehensive review of high-quality plant DNA isolation. – The Pharma Innovation Journal. SP-11 (6): 171–176. https://doi.org/10.3390/plants11030242
- Baydar N.G., Baydar H., Debener T. 2004. Analysis of genetic relationships among Rosa damascena plants grown in Turkey by using AFLP and microsatellite markers. – J. Biotechnol. 111 (3): 263–267. https://doi.org/10.1016/j.jbiotec.2004.04.014
- Beklemishev V.N. 2015. Prostranstvennaya I functsional’naya structura populyatsiy [Spatial and functional structure of populations]. – Russ. Ornithol. J. 24 (1093): 87–100 (In Russ.).
- Blackwell A., Stuart A.E., Estambale B.B. 2003. The repellent and antifeedant activity of Myrica gale oil against Aedes aegypti mosquitoes and its enhancement by the addition of salicyluric acid. – J. R. Coll. Physicians Edinb. 33: 209–214.
- Blears M.J., De Grandis S.A., Lee H., Trevors J.T. 1998. Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. – J. Ind. Microbiol. Biotechnol. 21: 99–114. https://doi.org/10.1038/sj.jim.2900537
- Blignaut M., Ellis A.G., Le Roux J.J. 2013. Towards a transferable and cost-effective plant AFLP protocol. – PloS One. 8 (4): e61704. https://doi.org/10.1371%2Fjournal.pone.0061704
- Bond G. 1951. The fixation of nitrogen associated with the root nodules of Myrica gale L., with special reference to its pH relation and ecological significance. – Ann. Bot. 15 (4): 447–459. https://doi.org/10.1093/oxfordjournals.aob.a083291
- Crocker L.J., Schwintzer C.R. 1993. Factors affecting formation of cluster roots in Myrica gale seedlings in water culture. – Plant Soil. 152: 287–298. https://doi.org/10.1007/BF00029099
- Dairawan M., Shetty P.J. 2020. The evolution of DNA extraction methods. – Am. J. Biomed. Sci. Res. 8: 39–45. http://dx.doi.org/10.34297/AJBSR.2020.08.001234
- de Vere N., Rich T.C., Ford C.R., Trinder S.A., Long C., Moore C.W., Satterthwaite D., Davies H., Allainguillaume J., Ronca S., Tatarinova T., Garbett H., Walker K., Wilkinson M.J. 2012. DNA barcoding the native flowering plants and conifers of Wales. – PloS One. 7 (6): e37945. https://doi.org/10.1371/journal.pone.0037945
- Galaktionova U.A., Bolshakov V.N., Tikhodeeva M.Yu., Tikhodeyev O.N. 2023. Specific problems of genomic DNA extraction from plants: ways for solution. – Bot. Zhurn. 108 (6): 603–614 (In Russ.).
- Gil-Vega K., Díaz C., Nava-Cedillo A., Simpson J. 2006. AFLP analysis of Agave tequilana varieties. – Plant Sci. 170 (4): 904–909. https://doi.org/10.1016/j.plantsci.2005.12.014
- Glotov N.V., Zhivotovskiy L.A., Khovanov N.V., Khromov-Borisov N.N. 1982. Biometriya [Biomrtry]. Leningrad. 264 p. (In Russ.).
- Huguet V., Batzli J.M., Zimpfer J.F., Normand P., Dawson J.O., Fernandez M.P. 2001. Diversity and specificity of Frankia strains in nodules of sympatric Myrica gale, Alnus incana, and Shepherdia canadensis determined by rrs gene polymorphism. – Appl. Environ. Microbiol. 67 (5): 2116–2122. https://doi.org/10.1128%2FAEM.67.5.2116-2122.2001
- Huguet V., Mergeay M., Cervantes E., Fernandez M.P. 2004. Diversity of Frankia strains associated to Myrica gale in Western Europe: impact of host plant (Myrica vs. Alnus) and of edaphic factors. – Environ. Microbiol. 6 (10): 1032–1041. https://doi.org/10.1111/j.1462-2920.2004.00625.x
- Ivanter E.V., Kuznetsov O.L. (eds.). 2007. Krasnaya Kniga Respubliki Karelia [Red Book of the Republic of Karelia]. Petrozavodsk. 364 p. (In Russ.).
- Komarov V.L. (ed.). 1936. Voskovnik bolotmyi [Sweet gale]. – In: Flora of SSSR. Vol. 5. Moscow, Leningrad. P. 243–244 (In Russ.).
- Kotchoni S.O., Gachomo E.W. 2009. A rapid and hazardous reagent free protocol for genomic DNA extraction suitable for genetic studies in plants. – Mol. Biol. Rep. 36: 1633–1636. https://doi.org/10.1007/s11033-008-9362-9
- Kuzmina M.L., Braukman T.W.A., Fazecas A.J., Graham S.W., Dewaard S.L., Rodrigues A., Bennett B.A., Dickinson T.A., Saarela J.M., Catling P.M., Newmaster S.G., Percy D.M., Fenneman E., Lauron-Moreau A., Ford B., Gillespie L., Subramanyam R., Whitton J., Jennings L., Metsger D., Warne C.P., Brown A., Sears E., Dewaard J.R., Zakharov E.V., Hebert P.D.N. 2017. Using herbarium-derived DNAs to assemble a largescale DNA barcode library for the vascular plants of Canada. – Appl. Plant Sci. 5 (12): 1700079. https://doi.org/10.3732/apps.1700079
- Leipold M., Tausch S., Hirtreiter M., Poschlod P., Reisch C. 2020. Sampling for conservation genetics: how many loci and individuals are needed to determine the genetic diversity of plant populations using AFLP? – Conserv. Genet. Resour. 12: 99–108. https://doi.org/10.1007/s12686-018-1069-1
- MacDonald A.D. 1989. The morphology and relationships of the Myricaceae. – In: Evolution, Systematics and Fossil History of the Hamamelidae. Vol. 2: Higher Hamamelidae. Oxford, UK. P. 147–165.
- Malterud K.E. 1992. C-methylated dihydrochalcones from Myrica gale fruit exudate. – Acta Pharm. Nord. 4: 65–68. https://doi.org/10.1111/j.1600-0773.1996.tb00190.x
- Mueller U.G., Wolfenbarger L.L. 1999. AFLP genotyping and fingerprinting. – Trends Ecol. Evol. 14 (10): 389–394. https://doi.org/10.1016/s0169-5347(99)01659-6
- Nguyen T.T., Taylor P.W.J., Redden R.J., Ford R. 2004. Genetic diversity estimates in Cicer using AFLP analysis. – Plant Breed. 123 (2): 173–179. https://doi.org/10.1046/j.1439-0523.2003.00942.x
- Patsias K., Bruelheide H. 2011. Is the degree of clonality of forest herbs dependent on gap age? Using fingerprinting approaches to assess optimum successional stages for montane forest herbs. – Ecol. Evol. 1 (3): 290–305. https://doi.org/10.1002/ece3.23
- Poore M.E.D. 1956. The ecology of Woodwalton Fen. – J. Ecol. 44: 455–492.
- Popovici J., Bertrand C., Bagnarol E., Fernandez M.P., Comte G. 2008. Chemical composition of essential oil and headspace-solid microextracts from fruits of Myrica gale L. and antifungal activity. – Nat. Prod. Res. 22 (12): 1024–1032. https://doi.org/10.1080/14786410802055568
- Popovici J., Comte G., Bagnarol E., Alloisio N., Fournier P., Bellvert F., Bertrand C., Fernandez M.P. 2010. Differential effects of rare specific flavonoids on compatible and incompatible strains in the Myrica gale-Frankia actinorhizal symbiosis. – Appl. Environ. Microbiol. 76: 2451–2460. https://doi.org/10.1128/aem.02667-09
- Popovici J., Walker V., Bertrand C., Bellvert F., Fernandez M.P., Comte G. 2011. Strain specificity in the Myricaceae–Frankia symbiosis is correlated to plant root phenolics. – Funct. Plant Biol. 38 (9): 682–689. https://doi.org/10.1071/fp11144
- Rogers S., Bendich A. 1985. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. – Plant Mol. Biol. 5 (2): 69–76. https://doi.org/10.1007/BF00020088
- Rogers S., Bendich A. 1989. Extraction of DNA from plant tissues. – In: Plant Molecular Biology Manual. Springer. P. 73–83. https://doi.org/10.1007/978-94-009-0951-9_6
- Roldan-Ruiz I., Dendauw J., Van Bockstaele E., Depicker A., De Loos M. 2000. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). – Mol. Breeding. 6: 125–134. https://doi.org/10.1023/A%3A1009680614564
- Rosa G.P., Silva B.J., Seca A.M., Moujir L.M., Barreto M.C. 2020. Phytochemicals with added value from Morella and Myrica species. – Molecules. 25 (24): 6052. https://doi.org/10.3390%2Fmolecules25246052
- Ryabushkina N.A., Omasheva M.E., Galiakparov N.N. 2012. Spetsifika vydeleniya DNK is rastitel’nykh ob’ektov [Specificity of DNA extraction from plants]. – Biotekhnologia. Teoria i Praktika. 2: 9–26 (In Russ.).
- Saunders J.A., Pedroni M.J., Penrose L.D., Fist A.J. 2001. AFLP analysis of opium poppy. – Crop Sci. 41 (5): 1596–1601. https://doi.org/10.2135/cropsci2001.4151596x
- Schwintzer C.R., Lancelle S.A. 1983. Effect of water table depth on shoot growth, root growth and nodulation of Myrica gale seedlings. – J. Ecol. 71: 489–501. https://doi.org/10.2307/2259730
- Schwintzer C.R., Ostrofsky A. 1989. Factors affecting germination of Myrica gale seeds. – Can. J. For. Res. 19: 1105–1109. http://dx.doi.org/10.1139/x89-167
- Silva B.J., Seca A.M., Barreto M.D.C., Pinto D.C. 2015. Recent breakthroughs in the antioxidant and anti-inflammatory effects of Morella and Myrica species. – Int. J. Mol. Sci. 16 (8): 17160–17180. https://doi.org/10.3390%2Fijms160817160
- Skene K.R., Sprent J.I., Raven J.A., Herdman L. 2000. Myrica gale L. – J. Ecol. 88 (6): 1079–1094. https://doi.org/10.1046/j.1365-2745.2000.00522.x
- Svoboda K.P., Inglis A., Hampson J., Galambosi B., Asakawa Y. 1998. Biomass production, essential oil yield and composition of Myrica gale L. harvested from wild populations in Scotland and Finland. – Flavour Frag. J. 13: 367–372. https://doi.org/10.1002/(SICI)1099-1026(199811/12)13:6%3C367::AID-FFJ724%3E3.0.CO;2-M
- Sylvestre M., Legault J., Dufour D., Pichette A. 2005. Chemical composition and anticancer activity of leaf essential oil of Myrica gale L. – Phytomedicine. 12: 299–304. https://doi.org/10.1016/j.phymed.2003.12.004
- The Red Book of the Russian Federation. 2008. Krasnaya kniga Rossiyskoy Federatsii (rasteniya i griby). Мoscow. 885 p. (In Russ.).
- Volkova E.A., Smagin V.A., Khramtsov V.N. 2021. Societies with Myrica gale L. in bogs on the edge of Finn Gulf (Saint-Petersburg and Leningrad District). – Vegetation of Russia. 41: 58–74 (In Russ.).
- Vos P., Hogers R., Bleeker M., Reijans M., Lee T.V.D., Hornes M., ... Zabeau M. 1995. AFLP: a new technique for DNA fingerprinting. – Nucleic Acids Res. 23 (21): 4407–4414. https://doi.org/10.1093%2Fnar%2F23.21.4407
Supplementary files
