Recovery of peat-forming layer after a fire on mesotrophic bog (Khabarovsk Territory)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper considers the structural organization of the peat active layer (acrotelm) of a mesotrophic bog in the Middle-Amur Lowland. Data on the phytomass and production of mosses as well as vascular plant roots are provided to describe the dynamics of the layer structure restoration after fire. It was established that the phytomass of live sphagnum mosses has recovered by 42% in 12 years after the fire, with a change in the dominating species. The production of dominant Sphagnum fuscum ((84 ± 14) g/m2) was 1.5 times more than the production of S. divinum ((54 ± 14) g/m2) before the fire, and than decreased by 1.5 times on the site that was unburned in 2008 and by 4 times in the burned site by the end of the observations. An analysis of the Polytrichum strictum phytomass dynamics during the pyrogenic succession of the phytocenose is provided. The phytomass of P. strictum in the 0–30 cm horizon rose by the end of the monitoring observations by (1537 ± 540) g/m2 on the burned site and by (2142 ± 366) g/m2 on the site not affected by the 2008 fire.

Full Text

Restricted Access

About the authors

T. A. Kopoteva

Institute of Water and Ecology Problems FEB RAS

Author for correspondence.
Email: kopoteva@ivep.as.khb.ru
Russian Federation, Kim Yu Chen Str., 65, Khabarovsk, 680000

V. A. Kuptsova

Institute of Water and Ecology Problems FEB RAS

Email: victoria@ivep.as.khb.ru
Russian Federation, Kim Yu Chen Str., 65, Khabarovsk, 680000

References

  1. Bazarova V.B., Grebennikova T.A., Orlova L.A. 2014. Natural-environment dynamics within the Amur basin during the Neoglacial. – Geography and natural resources. 3: 124–132 (In Russ.).
  2. Burenina T.A. 2005. Reafforestation after fires in Amurskaya oblast. – Vestnik Severo-Vostochnogo nauchnogo centra DVO RAN. 2: 64–71 (In Russ.).
  3. Burenina T.A. 2006. The dynamics of surface phytomass and carbon emission as affected by forest fires on Sakhalin Island. – Vestnik Severo-Vostochnogo nauchnogo centra DVO RAN. 2: 75–85 (In Russ.).
  4. Vishnyakova E.K., Mironycheva-Tokareva N.P., Kosykh N.P. 2012. Decomposition dynamics of plants of bogs (Data: Vasyugan Bog). – Vestnik Tomskogo gosudarstvennogo pedagogicheskogo universiteta. 7(122): 87–92 (In Russ.).
  5. Golovatskaya E.A., Nikonova L.G. 2013. Decomposition of plant residues in peat soils of oligotrophic peatlands. – Vestnik Tomskogo gosudarstvennogo pedagogicheskogo universiteta. 3(23): 137–151 (In Russ.).
  6. Efremova T.T., Efremov S.P. 1994. Peat fires as an ecological factor of development. – Ekologia. 5: 27–34 (In Russ.).
  7. Zhuravleva E.N., Ipatov V.S. 2003. Interrelations between Sphagnum (Sphagnaceae) and Polytrichum commune (Polytrichaceae) in bog pine forests. – Bot. Zhurn. 88(8): 20–27 (In Russ.).
  8. Kalyuzhny I.L. 2019. Hydro-physical properties of the active layer in bogs in the Kola Peninsula. – Vestnik Kol'skogo nauchnogo centra RAN. 1(11): 14–29 (In Russ.).
  9. Kopoteva T.A., Kuptsova V.A. 2016a. Effect of fires on phytomass and primary production dynamics of the mesotrophic undershrub-sphagnum bog in the Amur region. – Zhurnal obshchey biologii. 5(77): 397–405 (In Russ.).
  10. Kopoteva T.A., Kuptsova V.A. 2016b. Effect of fires on the functioning of phytocenoses of peat bogs in the Middle-Amur Lowland. – Ekologiya. 1(47): 11–18 (In Russ.).
  11. Kopoteva T.A. 2019. Pyrogenic succession in moss layer on mesotrophic peat bog of Outer Manchuria (Priamurye). – Bot. Zhurn. 7(104): 1045–1058 (In Russ.).
  12. Kuptsova V.A., Kopoteva T.A. 2014. Phytomass structure and production of peatlands in the Middle Amur Lowlands in different wetting condition. – West Siberian Peatlands and Carbon Cycle: past and present: Proc. Fourth Int. Field Symposium (Novosibirsk, August 4–17, 2014). Tomsk. P. 194–196 (In Russ.).
  13. Likhanova N.V. 2014. The role of tree waste in the litter layer formation in cutting arease forests of the Middle Taiga Spruce Forests. – Bull. of Higher Educational Institutions. Lesnoy Zhurnal (Russian Forestry Journal). 3: 52–66 (In Russ.).
  14. Malashchuk A.A., Philippov D.A. 2021. Post-pyrogenic dynamics of the vegetation cover of the Barskoe raised bog (Vologda Region, Russia). – Transformatsiya ekosistem. 4(1): 104–121 (In Russ.).
  15. Malysheva T.V. 1970. On the method of distinguishing between living and dead parts of mosses when taking into account their phytomass. – Bot. Zhurn. 5(55): 704–709 (In Russ.).
  16. Naumov A.V., Kosykh N.P., Parshina E.K., Artymuk S.Yu. 2009. Forest-steppe raised bogs, their condition and monitoring. – Sibirskiy ekologicheskiy zhurnal. 2: 251–259 (In Russ.).
  17. Ob utverzhdenii metodik rascheta vybrosov zagryaznyayushchikh veshchestv v atmosferu (chast 2). Prikaz Gos. komitet RF po okhrane okruzhayushchei sredy. 05.03.97. No. 90 (In Russ.)
  18. Peskov A.Yu., Krutikova V.O., Karetnikov A.S., Didenko A.N., Zakharchenko E.N., Chakov V.V., Klimin M.A. 2020. Geochemistry and magnetism of peat deposits in the Khor–Kiya interfluve, Sikhote–Alin (preliminary results). – Tihookeanskaya geologiya. 2(14): 169–179 (In Russ.).
  19. Popov S.Yu. 2000. Pyrogenic successions of Sphagnum mosses in Central Russia. – Bot. Zhurn. 85(2): 89–96 (In Russ.).
  20. Prozorov Yu.S. 1961. Mires of the mari landscape of the Middle Amur Lowland. Moscow. 121 p. (In Russ.).
  21. Prozorov Yu.S. 1974. Bolota nizhneamurskikh nizmennostey [Swamps of the Lower Amur lowlands]. – Novosibirsk. 211 p. (In Russ.).
  22. Prozorov Yu.S. 1985. Patterns of development, classification and use of mire biogeocenoses. Moscow. 207 p. (In Russ.).
  23. Rekomendatsii po tusheniyu torfyanykh pozharov na osushennykh bolotakh. 2020. S.-Peterburg. OMNNO. “Sovet Greenpeace”. P. 187. (In Russ.).
  24. Titlyanova А.А. 2010. The role of belowground plant organs in the carbon turnover in mires, Mires and biosphere. – Proceedings of VII All-Russian Conference with International Participation of Scientifical Schools (September 13–15, 2010, Tomsk). Tomsk. P. 109–112 (In Russ.).
  25. Titlyanova A.A., Afanasiev A.N., Naumova N.B. 1993. Successions and the biological cycle. Novosibirsk. 157 p. (In Russ.).
  26. Tsaregradskaya S.Yu., Kositsyn V.N. 1999. Assessment of the vegetation cover after heavy peat fire. – Proceedings of International Conference. Moscow. P. 156–158 (In Russ.).
  27. Benscoter B.W. 2006. Post-fire bryophyte establishment in a continental bog. – J. Veg. Sci. 17: 647–652.
  28. Benscoter B.W., Vitt D.H. 2008. Spatial patterns and temporal trajectories of the bog ground layer along a post-fire chronosequence. – Ecosystems. 11(7): 1054–1064.
  29. Bourgeau-Chavez L.L., Grelik S.L., Billmire M., Jenkins L.K., Kasischke E.S., Turetsky M. 2020. Assessing boreal peat fire severity and vulnerability of peatlands to early season wildland fire. – Front. for Glob. Change. Vol. 3. Article 20. 13 p. https://doi.org/10.3389/ffgc.2020.00020
  30. Bu Zh.J., Rydin H., Chen X. 2011. Direct and interaction-mediated effects of environmental changes on peatland bryophytes. – Oecologia. 166(2): 555–563. https://www.jstor.org/stable/41499857
  31. Bubier J.L., Moore T.R., Bledzki L.A. 2007. Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. – Glob. Change Biol. 13(6): 1168–1186. https://doi.org/10.1111/j.1365-2486.2007.01346.x
  32. Groeneveld E.V.G., Masse A., Rochefort L. 2007. Polytrichum strictum as a Nurse-Plant in Peatland Restoration. – Restor. Ecol. 15(4): 709–719. https://doi.org/10.1111/j.1526-100X.2007.00283.x
  33. Juutinen S., Moore T.R., Laine A.M., Bubier J.L., Tuittila E.-St., Young A.D., Chong M. 2016. Responses of mosses Sphagnum capillifolium and Polytrichum strictum to nitrogen deposition in a bog: height growth, ground cover, and CO2 exchange. – J. Bot. 94(2): 127–138. https://doi.org/10.1139/cjb-2015-0183
  34. Longton R.E. 1979. Studies on growth, reproduction and population ecology in relation to microclimate in the bipolar moss Polytrichum alpestre. – Bryologist. 82: 325–367.
  35. Potvin L.R., Kane E.S., Chimner R.A., Kolka R.K., Lilleskov E.A. 2015. Effects of water table position and plant functional group on plant community, aboveground production, and peat properties in a peatland mesocosm experiment (PEATcosm). – Plant Soil. 387: 277–294. https://doi.org/10.1007/s11104-014-2301-8
  36. Norby R.J., Childs J., Hanson P.J., Warren J.M. 2019. Rapid loss of an ecosystem engineer: Sphagnum decline in an experimentally warmed bog. – Ecol. Evol. 9(22): 12571–12585. https://doi.org/10.1002/ece3.5722
  37. Shetler G., Turetsky M.R., Kane E. 2008. Sphagnum mosses limit total carbon consumption during fire in Alaskan black spruce forests. – Can. J. For. Res. 38(8): 2328–2336. https://doi.org/10.1139/X08-057
  38. Turetsky M.R., Benscoter B.W., Page S., Rein G., van der Werf G.R., Watts A. Global vulnerability of peatlands to fire and carbon loss. – Nat. Geosci. 2015. 8(1): 11–14. https://doi.org/10.1038/ngeo2325
  39. Turetsky M., Wieder K., Halsey L., Vitt D.H. 2002. Current disturbance and the diminishing peatland carbon sink. – Geophys. Res. Lett. 29(11): 21-1–21-4. https://doi.org/10.1029/2001GL014000
  40. Vitt D.H. 2007. Estimating moss and lichen ground layer net primary production in tundra, peatlands and forests. – Principles and Standards for Measuring Primary Production. New York. P. 82–105.
  41. Wieder R.K., Scott K.D., Kamminga K., Vile M.A., Vitt D.H., Bone T., Xu B.I.N., Benscoter B.W., Bhatti J.S. 2009. Postfire carbon balance in boreal bogs of Alberta, Canada. – Glob. Change Biol. 15: 63–81. https://doi.org/10.1111/j.1365-2486.2008.01756.x

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic map of the study area: А – the bog site unburned in 2008; Б – the site burned in 2008; 1 – secondary birch-aspen forest; 2 – Siberian pine-broadleaved forest; 3 – sedge-reedgrass swampy meadowes with meadowsweet; 4 – mesotrophic dwarf-shrub-sphagnum bog with larch; 5 – boundaries of the areas of mesotrophic bog, unburned in 2008; 6 − boundaries of the areas of the bog massif subjected to a series of burns and fires from early 1990s (moss-free dwarf-birch thicket); 7 – boundaries of the bog massif with vegetation cover completely burned by the fire of 2008; 8 − road; 9 − meliorative system (Kopoteva, Kuptsova, 2016a).

Download (370KB)
3. Fig. 2. Botanical composition of the peat of the studied mesotrophic mire.

Download (413KB)
4. Fig. 3. Dynamics of the acrotelm structure in unburned (A) and burned (Б) areas, g/m2: 1 – living roots of dwarf shrubs; 2 – dead roots of dwarf shrubs; 3 – falling leaves of dwarf shrubs; 4 – living roots of herbs; 5 – dead roots of herbs; 6 – living phytomass of Polytrichum strictum; 7 – mortmass of P. strictum; 8 – living phytomass of Sphagnum fuscum; 9 – S. fuscum tirr of a low degree of decomposition; 10 – living phytomass of S. divinum; 11 – S. divinum tirr of a low degree of decomposition; 12 – tirr of a high degree of decomposition; 13 – peat.

Download (575KB)
5. Fig. 4. Dynamics of acrotelm structure recovery in a burned area: 1 – peat; 2 – tirr of a high degree of decomposition; 3 – tirr of Sphagnum divinum + S. fuscum of a low degree of decomposition.

Download (210KB)
6. Fig. 5. Dynamics of tirr and peat fraction ratios in the unburned area: 1 – peat; 2 – tirr of a high degree of decomposition; 3 – tirr of Sphagnum divinum + S. fuscum of a low degree of decomposition.

Download (249KB)

Copyright (c) 2024 Russian Academy of Sciences