Species and spatial structure of tree stands in north-taiga pine-spruce forests at different stages of post-fire succession

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The changes in the species structure of the tree layer of northern taiga dwarf shrub-green moss pine-spruce forests and the spatial distribution of the main forest-forming species, namely Picea obovata Ledeb., Pinus sylvestris L. and Betula pubescens Ehrh., in the process of post-fire succession are analyzed (using communities with a fire age of 80, 150 and 380 years as an example). It is established that the forest-forming species of the studied communities differ in the dynamics of participation in the composition of the forest stand during succession. In the late succession community with a fire age of 380 years, the participation of Siberian spruce, Scots pine and downy birch in the tree layer by the basal area differs insignificantly and is, respectively, 30, 43 and 27%, i.e. at the subclimax stage, the studied communities are essentially birch-pine-spruce. The spatial distribution of Scots pine and Siberian spruce in the first half of the succession can be random or weakly aggregated. In the subclimax community, the spatial distribution of these species naturally differs: Scots pine is distributed randomly, Siberian spruce has a small-group distribution. The distribution of downy birch trees through the succession is aggregated to varying degrees.

Full Text

Restricted Access

About the authors

N. I. Stavrova

V. L. Komarov Botanical Institute of the Russian Academy of Sciences

Author for correspondence.
Email: NStavrova@binran.ru
Russian Federation, 2, Professor Popov St., Saint Petersburg, 197022

V. V. Gorshkov

V. L. Komarov Botanical Institute of the Russian Academy of Sciences; S.M. Kirov Saint Petersburg State Forest Engineering University

Email: NStavrova@binran.ru
Russian Federation, 2, Professor Popov St., Saint Petersburg, 197022; 5/U, Institutskiy All., Saint Petersburg, 194021

P. N. Katyutin

V. L. Komarov Botanical Institute of the Russian Academy of Sciences; Saint Petersburg State University

Email: NStavrova@binran.ru
Russian Federation, 2, Professor Popov St., Saint Petersburg, 197022; 7-9, Universitetskaya Emb., Saint Petersburg, 199034

A. Yu. Lyanguzov

Saint Petersburg State University

Email: NStavrova@binran.ru
Russian Federation, 7-9, Universitetskaya Emb., Saint Petersburg, 199034

References

  1. Buzikin А.I., Gavrikov V.L., Sekretenko O.P., Khlebopros R.G. 1985. Analiz structury drevesnikh tsenozov [Analysis of the structure of tree communities]. Novosibirsk. 89 p. (In Russ.).
  2. Engelmark O. 1993. Early post-fire tree regeneration in a Picea-Vaccinium forest in northern Sweden. – J. Veg.Sci. 4: 791–794. https://doi.org/10.2307/3235616
  3. Goreaud F., Courbaud B., Collinet F. 1997. Spatial structure analysis applied to modelling of forest dynamics: A few examples. – In: Proceedings of the IUFRO Workshop “Empirical and Process Based Models for Forest Tree and Stand Growth Simulation”. Lisbon. P. 20–26.
  4. https://www.researchgate.net/publication/232128548
  5. Grabarnik P.Ya. 2010. Analisys of the Horizontal Structure of a Forest Stand: Model Approach. – Lesovedenie. 2: 77–85 (In Russ.).
  6. Grabarnik P.Ya., Komarov A.S. 1981. Statisticheskyi analiz gorizontalnoi structury drevostoya [Statistical analysis of the horizontal structure of the forest stand]. – In: Modelirovanie biogeotsenoticheskikh processov. Мoscow. P. 119–135 (In Russ.).
  7. Dinamika lesnykh soobshchestv severo-zapada Rossii [Dynamics of forest communities in northwestern Russia]. 2009. St. Petersburg. 276 p. (In Russ.).
  8. Ilchukov S.V. 2003. Dynamics of Horizontal Structure of Secondary Deciduous Stands. – Izv. Vuzov. Lesnoiy zhurnal. 6: 29–34 (In Russ.).
  9. Klassifikatsya i diagnostika pochv Rossii. Avtory I sostaviteli: L.L. Shishov, V.D. Tonkonogov, I.I. Lebedeva, M.I. Gerasimova [Classification and diagnostics of soils of Russia. Authors and compilers: L.L. Shishov, V.D. Tonkonogov, I.I. Lebedeva, M.I. Gerasimova]. 2004. Smolensk. 342 p. (In Russ.).
  10. Kolobov A.N., Lonkina E.S., Frisman E.Ya. 2015. Modeling and analysis of horizontal structure of a mixed tree stands (on example of sample plots in the “Bastak” nature reserve in the Middle Amur river area). – Sibirskiy Lesnoy Zurnal. 3: 45–56 (In Russ.). https://doi.org/10.15372/SJFS20150305
  11. Kutyavin I.N., Manov A.V. 2022. Spatial relationships of trees in middle taiga post-pyrogenic pine forest stands in the European North-East of Russia. – J. of For. Sci. 68 (6): 228–240. https://doi.org/10.17221/10/2022-JFS
  12. Kuzmichev V.V. 2013. Zakonomernosti dinamiki drevostoiev: pritsipi I modeli [Patterns of tree stand dynamics: principles and models]. Novosibirsk. 208 p. (In Russ.).
  13. Manov A.V., Kutyavin I.N. 2018. Horizontal structure of forest stands and new growth of northern taiga Virgin blueberry–Sphagnum spruce forests in Cisurals – Izv. Vuzov. Lesnoy zhurnal. 6: 78–88 (In Russ.). https://doi.org/10.17238/issn0536-1036.2018.6.78
  14. Manov A.V., Kutyavin I.N. 2019. Dimensional, age and spatial structure of middle taiga postfire pine stands on automorphic soils (on the example of Komi Republic). – Sibirskiy lesnoy zhurnal. 6: 100–110 (In Russ.). https://doi.org/10.15372/SJFS20190611
  15. Manov A.V., Kutyavin I.N. 2021. Spatial interrelations in the placement of woody plants in the middle taiga virgin spruce forests of the upper reaches of the Pechora river– Sibirskiy lesnoy zhurnal. 2: 82–95 (In Russ.). https://doi.org/10.15372/SJFS20210208
  16. Man’ko Yu.I., Voroshilov V.P. 1976. Morphology of Picea ajanensis under severe wind conditions. – Bot. Zhurn. 61(1): 78–84 (In Russ.).
  17. Melekhov I.S. 1933. O vozobnovlenii eli na garyakh [On the restoration of spruce on burnt areas]. – Lesnoe hozyaystvo i lesoekspluatatsiya. 10: 30–32 (In Russ.).
  18. Mirovaya referativnaya baza pochvennykh resursov 2014. Mezhdunarodnaya sistema pochvennoi klassifikatsii dlya diagnostiki pochv i sozdaniya legend pochvennykh kart. Ispravlennaya i dopolnennaya versiya 2015. Doklady o mirovykh pochvennykh resursakh [World Soil Resources Reference Base 2014. International Soil Classification System for Soil Diagnostics and Soil Map Legends. Revised and Supplemented Version 2015. World Soil Resources Reports]. 106. 2017. Moscow. 203 p. (In Russ.).
  19. Moeur M. 1993. Characterizing spatial patterns of trees using stem-mapped data. – Forest Science. 39(4): 756–775. https://doi.org/10.1093/forestscience/39.4.756
  20. Molchanov A.A., Preobrazhensky I.F. 1957. Lesa i lesnoe hozyaystvo Arhangel'skoy oblasti [Forests and forestry of the Arkhangelsk region]. Мoscow. 238 p. (In Russ.).
  21. Penttinen A., Stoyan D., Henttonen H.M. 1992. Marked point processes in forest statistics. – Forest Science. 38: 806–824. https://doi.org/10.1093/forestscience/38.4.806
  22. Petrenko T.Ya., Omelko A.M., Zhmerenetsky A.A., Ukhvatkina O.N., Sibirina L.A. 2017. Formation of spatial mosaic of Abies nephrolepis (Pinaceae) populations in korean pine-broadleaved forests in the south of Russian Far East. – Rastitelnye resursy. 53(4): 480–495 (In Russ.).
  23. Ripley B.D. 1976. The second-order analisis of stationary pint process. – J. Appl. Pronanility. 13: 255–266.
  24. Sannikov S.N., Sannikova N.S. 1985. Ekologiya estestvennogo vozobnovleniya sosny obyknovennoi pod pologom lesa [Ecology of natural regeneration of Scots pine under the forest canopy]. Мoscow. 149 p. (In Russ.).
  25. Sannikov S.N., Sannikova N.S., Petrova I.V. 2004. Natural forest regeneration in Western Siberia (ecologic-geographical essay). Ekaterinburg. 198 p. (In Russ.).
  26. Sekretenko O.P., Grabarnik P.Ya. 2015. Analysis of Tree Stand Horizontal Structure Using Random Point Field Methods. – Sibirskyy lesnoy zhurnal. 3: 32–44 (In Russ.). https://doi.org/10.15372/SJFS20150304
  27. Stavrova N.I., Gorshkov V.V., Katyutin P.N. 2016. Structure formation of forest tree species coenopopulations during post-fire recovery of northern taiga forest. – Trudy Karelskogo nauchnogo tsentra Rossiyskoy Akademii Nauk. 3: 10–28 (In Russ.). https://doi.org/10.17076/bg187
  28. Stavrova N.I., Gorshkov V.V., Katjutin P.N., Bakkal I.J. 2020. The Structure of Northern Siberian Spruce–Scots Pine Forests at Different Stages of Post-Fire Succession – Forests. 11(5): 558–581. https://doi.org/10.3390/f11050558
  29. Steijlen I., Zackrisson O. 1987. Long-term regeneration dynamics and successional trends in northern Swedish coniferous forest stand. – Can. J. Bot. 65(5): 839–848. https://doi.org/10.1139/b87-114
  30. Stoyan D., Pentinnen A. 2000. Recent applications of point process methods in forestry statistics. – Statistical science. 15(1): 61–78. https://doi.org/10.1214/ss/1009212674
  31. Tumakova E.A., Gorshkov V.V., Stavrova N.I. 2015. Spatial structure of Pinus sylvestris (Pinaceae) coenopopulations in the northern taiga Scots pine forests of Kola peninsula. – Rastitelnye resursy. 51(4): 520–541 (In Russ.).
  32. Ukhvatkina O.N., Omelko A.M., Zhmerenetsky A.A., Petrenko T.Ya. 2017. Formation of the spatial pattern of Picea ajanensis (Pinaceae) population in korean pine-broadleaved forest in the south of the Russian Far East. – Rastitelnye resursy. 53(1): 70–87 (In Russ.).
  33. Vais A.A. 2009. Horizontal structure of stand of trees in Mid-Siberia. – Nauchnyy zhurnal. Kub. Gos. Agrar. Univ. 45(1): 1–15 (In Russ.).
  34. Wallenius T., Kuuluvainen T., Heikkilä R., Lindholm T. 2002. Spatial tree age structure and fire history in two old-growth forests in eastern Fennoscandia. – Silva Fennica 36(1): 185–199. https://doi.org/10.14214/sf.557
  35. Wang X.-R., Chhatre V.E., Nilsson M.-Ch., Song W., Zackrisson O., Szmidt A.E. 2003. Island population of Norway spruce (Picea abies) in northern Sweden. – Intern. J. of Plant Sci. 164(5): 711–717. https://doi.org/10.1086/376811
  36. Xin H., JacksonT., Cao Y., Zhang H., Lin Y., Shenkin A. 2022. Spatial pattern analysis of forest trees based on the vectorial mark. – J. For. Res. 33:1301–1315. https://doi.org/10.1007/s11676-021-01417-6
  37. Zhang M., Wang J., Kang X. 2022. Spatial distribution pattern of dominant tree species in different disturbance plots in the Changbai Mountain. – Nature portfolio. 12: 14161. https://doi.org/10.1038/s41598-022-18621-x
  38. Zhmerenetsky A.A., Omelko A.M., Ukhvatkina O.N., Petrenko T.Ya. 2018. Formation of Amur linden (Tilia amurensis Rupr.) population mosaic in the stand of korean pine-broadleaved forest in the south of the Russian Far East. – Russian journal of ecosystem ecology. 3(1) (In Russ). https://doi.org/10.21685/2500-0578-2018-1-3

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distribution of Picea obovata trees (a, c, e) in 5 × 5 m squares, and curves of the L(r) – r function (b, d, f) in the studied pine-spruce forests with a fire age of 80 (a, b), 150 (c, d) and 380 (e, f) years. X-axis: radius, m; Y-axis: value of the L(r) – r function. The number of individuals in squares is indicated by different hatching.

Download (401KB)
3. Fig. 2. Distribution of Pinus sylvestris trees (a, c, e) in 5 × 5 m squares and L(r) – r function curves (b, d, f) in the studied pine-spruce forests with a fire age of 80 (a, b), 150 (c, d) and 380 (e, f) years. X-axis: radius, m; Y-axis: value of the L(r) – r function. The number of individuals in squares is indicated by different hatching.

Download (398KB)
4. Fig. 3. Distribution of Betula pubescens trees (a, c, e) in 5 × 5 m squares and L(r) – r function curves (b, d, f) in the studied pine-spruce forests with a fire age of 80 (a, b), 150 (c, d) and 380 (e, f) years. X-axis: radius, m; Y-axis: value of the L(r) – r function. The number of individuals in squares is indicated by different hatching.

Download (385KB)

Copyright (c) 2024 Russian Academy of Sciences