Antibiotic properties of nisin in the context of its use as a food additive
- Authors: Bagryantseva O.V.1,2, Khotimchenko S.A.1,2, Petrenko A.S.3, Sheveleva S.A.1, Arnautov O.V.4, Elizarova E.V.2
-
Affiliations:
- Federal Research Centre for Nutrition and Biotechnology
- I.M. Sechenov First Moscow State Medical University
- EAS Strategies
- Eurasian Economic Commission
- Issue: Vol 99, No 7 (2020)
- Pages: 704-711
- Section: FOOD HYGIENE
- Published: 08.09.2020
- URL: https://rjmseer.com/0016-9900/article/view/639712
- DOI: https://doi.org/10.47470/0016-9900-2020-99-7-704-711
- ID: 639712
Cite item
Full Text
Abstract
Background. Scientific research has demonstrated that microbial pathogens could develop resistance to multiple antibacterial agents. Food additives, in particular preservatives, have also been shown to increase antimicrobial resistance of food-contaminating microorganisms. In this work the lantibiotic nisin was shown to exhibit: it contributes to the development of the antibiotic resistance of pathogenic and opportunistic microorganisms, reduces the immune status, the development of an imbalance of intestinal microbiocenosis, affects the body’s metabolism through the regulation of DNA transcription.
Purpose. To assess the risks of nisin (E234) use taking into account its impact on the biological properties of microorganisms-food contaminants.
Material and methods. Calculation of nisin consumption with food under conditions of scenarios 1 and 2 was carried out taking into account the bodyweight of consumers of different age groups in the Russian population in the software Exel. The analysis of scientific data on the biological properties of nisin, including the ability to form to the resistance of microorganisms was provided.
Results and conclusion. For the first time, the calculated amounts of the food additive-preservative nisin (E234) in the intestinal contents were shown to exceed the minimum inhibitory concentrations of nisin for representatives of the normal flora of the human gastrointestinal tract in consumers of all ages by from 40 to 27064 times, depending on the consumption scenario (with minimum and maximum exposure levels). It has been argued that the safety of nisin used as a food additive needs to be re-assessed taking into account its considerable contribution to the antimicrobial resistance of food pathogens.
About the authors
Olga V. Bagryantseva
Federal Research Centre for Nutrition and Biotechnology; I.M. Sechenov First Moscow State Medical University
Author for correspondence.
Email: bagryantseva@ion.ru
ORCID iD: 0000-0003-3174-2675
MD, Ph.D., DSCi., leading researcher of the laboratory of food toxicology and safety assessment nanotechnology of the
Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, 109240; Professor of the Department of food hygiene and toxicology of I.M. SechenovFirst Moscow State Medical University (Sechenov University), Moscow, 119991, Russian Federation.
Russian Federation
Sergey A. Khotimchenko
Federal Research Centre for Nutrition and Biotechnology; I.M. Sechenov First Moscow State Medical University
Email: noemail@neicon.ru
ORCID iD: 0000-0002-5340-9649
Russian Federation
Alexey S. Petrenko
EAS Strategies
Email: noemail@neicon.ru
ORCID iD: 0000-0002-6461-0196
Russian Federation
Svetlana A. Sheveleva
Federal Research Centre for Nutrition and Biotechnology
Email: noemail@neicon.ru
ORCID iD: 0000-0001-5647-9709
Russian Federation
Oleg V. Arnautov
Eurasian Economic Commission
Email: noemail@neicon.ru
ORCID iD: 0000-0003-3309-0308
Russian Federation
Elena V. Elizarova
I.M. Sechenov First Moscow State Medical University
Email: noemail@neicon.ru
ORCID iD: 0000-0001-5300-8688
Russian Federation
References
- Roca I., Akova M., Baquero F., Carlet J., Cavaleri M., Coenen S. et al. The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect. 2015; 6: 22–9. https://doi.org/10.1016/j.nmni.2015.02.007
- Hiltunen T., Virta M., Laine A.L. Antibiotic resistance in the wild: an eco-evolutionary perspective. Philos Trans R Soc Lond B Biol Sci. 2017; 372(1712): 20160039. https://doi.org/10.1098/rstb.2016.0039
- Romero D., Traxler M.F., López D., Kolter R. Antibiotics as signal molecules. Chem Rev. 2011; 111(9): 5492-505. https://doi.org/10.1021/cr2000509
- Sheveleva S.A. Antimicrobial-resistant microorganisms in food as a hygienic problem. Gigiena i sanitariya. 2018; 97(4): 342–54. https://doi.org/10.18821/0016-9900-2018-97-4-342-354 (in Russian)
- Draper L.A., Cotter P.D., Hill C., Ross R.P. Lantibiotic resistance. Microbiol Mol Biol Rev. 2015; 79(2): 171–91. https://doi.org/10.1128/mmbr.00051-14
- Nhung N.T., Van N.T.B., Cuong N.V., Duong T.T.Q., Nhat T.T., Hang T.T.T. et al. Antimicrobial residues and resistance against critically important antimicrobials in non-typhoidal salmonella from meat sold at wet markets and supermarkets in Vietnam. Int J Food Microbiol. 2018; 266: 301–9. https://doi.org/10.1016/j.ijfoodmicro.2017.12.015
- WHO. Antimicrobial Resistance: Global Report on Surveillance; 2014. Available at: http://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
- Mazzotta A.S., Montville T.J. Characterization of fatty acid composition, spore germination, and thermal resistance in a nisin-resistant mutant of Clostridium botulinum 169b and in the wild-type strain. Appl Environ Microbiol. 1999; 65(2): 659–64.
- Collins B., Guinane C.M., Cotter P.D., Hill C., Ross R.P. Assessing the contributions of the LiaS histidine kinase to the innate resistance of Listeria monocytogenes to nisin, cephalosporins, and disinfectants. Appl Environ Microbiol. 2012; 78(8): 2923–9. https://doi.org/10.1128/aem.07402-11
- Bergholz T.M., Tang S., Wiedmann M., Boor K.J. Nisin resistance of Listeria monocytogenes is increased by exposure to salt stress and is mediated via LiaR. Appl Environ Microbiol. 2013; 79(18): 5682–8. https://doi.org/10.1128/aem.01797-13
- Campion A., Casey P.G., Field D., Cotter P.D., Hill C., Ross R.P. In vivo activity of nisin A and nisin V against Listeria monocytogenes in mice. BMC Microbiol. 2013; 13: 23. https://doi.org/10.1186/1471-2180-13-23
- Pushpanathan M., Gunasekaran P., Rajendhran J. Antimicrobial peptides: versatile biological properties. Int J Pept. 2013; 2013: 675391. https://doi.org/10.1155/2013/675391
- Kruszewska D., Sahl H.G., Bierbaum G., Pag U., Hynes S.O., Ljungh A. Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. J Antimicrob Chemother. 2004; 54(3): 648–53. https://doi.org/10.1093/jac/dkh387
- Bechinger B., Gorr S.U. Antimicrobial peptides: mechanisms of action and resistance. J Dent Res. 2017; 96(3): 254–60. https://doi.org/10.1177/0022034516679973
- Tong Z., Zhang Y., Ling J., Ma J., Huang L., Zhang L. An in vitro study on the effects of nisin on the antibacterial activities of 18 antibiotics against Enterococcus faecalis. PLoS One. 2014; 9(2): e89209. https://doi.org/10.1371/journal.pone.0089209
- Nawrocki K., Crispell E., McBride S. Antimicrobial peptide resistance mechanisms of gram-positive bacteria. Antibiotics. 2014; 3(4): 461–92. https://doi.org/10.3390/antibiotics3040461
- Mathur H., Field D., Rea M.C., Cotter P.D., Hill C., Ross R.P. Bacteriocin-antimicrobial synergy: a medical and food perspective. Front Microbiol. 2017; 8: 1205. https://doi.org/10.3389/fmicb.2017.01205
- Mathur H., Field D., Rea Mary C., Cotter P.D., Hill C., Ross R.P. Fighting biofilms with lantibiotics and other groups of bacteriocins. NPJ Biofilms Microbiomes. 2018; 4: 9. https://doi.org/10.1038/s41522-018-0053-6
- Food Consumption. All Households, Kg/Year/Person 2014. Available at: http://www.gks.ru/search?q=потребление+пищевых+продуктов
- Combined Compendium of Food Additive Specification. Available at: http://www.fao.org/fileadmin/user_upload/jecfa_additives/docs/monograph14/additive-295-m14.pdf
- Hurst A. Nisin. Adv Appl Microbiol. 1981; 27: 85–123. https://doi.org/10.1016/s0065-2164(08)70342-3
- Technical regulations of the Customs Union 029/2012. Safety requirements for food additives, flavorings and technological AIDS. (in Russian)
- Nisin. In: World Health Organization. Evaluation of Certain Food Additives and Contaminants: Seventy-Seventh Report of the Joint Fao/Who Expert Committee on Food Additives. Technical Report Series. Malta; 2013.
- European Food Safety Authority (EFSA). Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to the safety in use of nisin as a food additive in an additional category of liquid eggs. EFSA J. 2006; 4(12): 314b. https://doi.org/10.2903/j.efsa.2006.314b
- Younes M., Aggett P., Aguilar F., Crebelli R., Dusemund B., Filipi M. et al. Safety of nisin (E 234) as a food additive in the light of new toxicological data and the proposed extension of use. EFSA J. 2017; 15(12): e05063. https://doi.org/10.2903/j.efsa.2017.5063
- Severina E., Severin A., Tomasz A. Antibacterial efficacy of nisin against multidrug-resistant Gram-positive pathogens. J Antimicrob Chemother. 1998; 41(3): 341–7. https://doi.org/10.1093/jac/41.3.341
- Malanovic N., Lohner K. Antimicrobial peptides targeting gram-positive bacteria. Pharmaceuticals (Basel). 2016; 9(3): 59. https://doi.org/10.3390/ph9030059
- Kingston A.W., Liao X., Helmann J.D. Contributions of the σ(W), σ(M) and σ(X) regulons to the lantibiotic resistome of Bacillus subtilis. Mol Microbiol. 2013; 90(3): 502–18. https://doi.org/10.1111/mmi.12380
- Sun Z., Li P., Liu F., Bian H., Wang D., Wang X. et al. Synergistic antibacterial mechanism of the Lactobacillus crispatus surface layer protein and nisin on Staphylococcus saprophyticus. Sci Rep. 2017; 7(1): 265. https://doi.org/10.1038/s41598-017-00303
- Sun Z., Zhong J., Liang X., Liu J., Chen X., Huan L. Novel mechanism for nisin resistance via proteolytic degradation of nisin by the nisin resistance protein NSR. Antimicrob Agents Chemother. 2009; 53(5): 1964–73. https://doi.org/10.1128/aac.01382-08
- Dielbandhoesing S.K., Zhang H., Caro L.H., van der Vaart J.M., Klis F.M., Verrips C.T. et al. Specific cell wall proteins confer resistance to nisin upon yeast cells. Appl Environ Microbiol. 1998; 64(10): 4047–52.
- Biswaro L.S., da Costa Sousa M.G., Rezende T.M.B., Dias S.C., Franco O.L. Antimicrobial peptides and nanotechnology, recent advances and challenges. Front Microbiol. 2018; 9: 855. https://doi.org/10.3389/fmicb.2018.00855
- Joo N.E., Ritchie K., Kamarajan P., Miao D., Kapila Y.L. Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1. Cancer Med. 2012; 1(3): 295–305. https://doi.org/10.1002/cam4.35
- Zainodini N., Hassanshahi G., Hajizadeh M., Falahati-Pour S.K., Mahmoodi M., Mirzaei M.R. Nisin induces cytotoxicity and apoptosis in human asterocytoma cell line (SW1088). Asian Pac J Cancer Prev. 2018; 19(8): 2217–22. https://doi.org/10.22034/APJCP.2018.19.8.2217
- Zhang J., Caiyin Q., Feng W., Zhao X., Qiao B., Zhao G., et al. Enhance nisin yield via improving acid-tolerant capability of Lactococcus lactis F44. Sci Rep. 2016; 6: 27973. https://doi.org/10.1038/srep27973
- Zhou L., Wang L., Tian P., Bao T., Li L., Zhao X. The LiaFSR and BsrXRS systems contribute to bile salt resistance in enterococcus faecium isolates. Front Microbiol. 2019, 10: 1048. https://doi.org/10.3389/fmicb.2019.01048
- Kaczor A.A., Polski A., Sobotka-Polska K., Pachuta-Stec A., Makarska B.M., Pitucha M. Novel antibacterial compounds and their drug targets – successes and challenges. Curr Med Chem. 2017; 24(18): 1948–82. https://doi.org/10.2174/0929867323666161213102127
- Bengtsson-Palme J., Kristiansson E., Larsson D.G.J. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev. 2018; 42(1): fux053. https://doi.org/10.1093/femsre/fux053
- Guidelines for Simple Evaluation of Dietary Exposure to Food Additives CXG 3-1989 Available at: http:// http://www.fao.org/fao-who-codexalimentarius/codex-texts/guidelines/en/
- Codex Alimentarius Commission. The General Standard for Food Additives. CODEX Stan 192-1995. Geneva; 1995. Available at: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B192-1995%252FCXS_192e.pdf
- WHO. The 47th meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Toxicological Evaluation of Certain Veterinary Drug Residues in Food. Geneva; 1996. Available at: http://www.who.int/foodsafety/publications/jecfa-reports/en/
- Revilla-Guarinos A., Gebhard S., Alcántara C., Staro A., Mascher T., Zúñiga M. Characterization of a regulatory network of peptide antibiotic detoxification modules in Lactobacillus casei BL23. Appl Environ Microbiol. 2013; 79(10): 3160–70. https://doi.org/10.1128/aem.00178-13
- Józefiak D., Kieroczyk B., Jukiewicz J., Zduczyk Z., Rawski M., Dugosz J. et al. Dietary Dietary nisin modulates the gastrointestinal microbial ecology and enhances growth performance of the broiler chickens. PLoS One. 2013; 8(12): e85347. https://doi.org/10.1371/journal.pone.0085347
- Kawada-Matsuo M., Yoshida Y., Zendo T., Nagao J., Oogai Y., Nakamura Y. et al. Three distinct two-component systems are involved in resistance to the class I bacteriocins, Nukacin ISK-1 and nisin A, in Staphylococcus aureus. PLoS One. 2013; 8(7): e69455. https://doi.org/10.1371/journal.pone.0069455
- Zhou H., Fang J., Tian Y., Lu X.Y. Mechanisms of nisin resistance in Gram-positive bacteria. Ann Microbiol. 2013; 64(2): 413–20. https://doi.org/10.1007/s13213-013-0679-9
- Shin J., Gwak J., Kamarajan P., Fenno J., Rickard A., Kapila Y. Biomedical applications of Nisin. J Appl Microbiol. 2016; 120(6): 1449–65. https://doi.org/10.1111/jam.13033
- Roy R., Tiwari M., Donelli G., Tiwari V. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence. 2017; 9(1): 522–54. https://doi.org/10.1080/21505594.2017.1313372
- Mantovani H.C., Russell J.B. Nisin resistance of Streptococcus bovis. Appl Environ Microbiol. 2001; 67(2): 808–13. https://doi.org/10.1128/aem.67.2.808-813.2001
- Papadimitriou K., Alegría Á., Bron P.A., de Angelis M., Gobbetti M., Kleerebezem M. et al. Stress physiology of lactic acid bacteria. Microbiol Mol Biol Rev. 2016; 80(3): 837–90. https://doi.org/10.1128/mmbr.00076-15
- Dicks L.M.T., Dreyer L., Smith C., van Staden A.D. A Review: The Fate of Bacteriocins in the Human Gastro-Intestinal Tract: Do They Cross the Gut–Blood Barrier? Front Microbiol. 2018; 9: 2297. https://doi.org/10.3389/fmicb.2018.02297
- Algburi A., Comito N., Kashtanov D., Dicks L.M.T., Chikindas M.L. Control of Biofilm Formation: Antibiotics and Beyond. Appl Environ Microbiol. 2017; 83(3): e02508–16. https://doi.org/10.1128/aem.02508-16
- Repka L.M., Chekan J.R., Nair S.K., van der Donk W.A. Mechanistic understanding of lanthipeptide biosynthetic enzymes. Chem Rev. 2017; 117(8): 5457–520. https://doi.org/10.1021/acs.chemrev.6b00591
- Yang X., Lennard K.R., He C., Walker M.C., Ball A.T., Doigneaux C. et al. A lanthipeptide library used to identify a protein-protein interaction inhibitor. Nat Chem Biol. 2018; 14(4): 375–80. https://doi.org/10.1038/s41589-018-0008-5
- Report of the Forty Eighth Session of the Codex Committee on Food Additives. Codex Alimentarius Commission; 2018.
- Field D., Baghou I., Rea M., Gardiner G., Ross R., Hill C. Nisin in combination with cinnamaldehyde and EDTA to control growth of Escherichia coli strains of swine origin. Antibiotics (Basel). 2017; 6(4): 35. https://doi.org/10.3390/antibiotics6040035
- Field D., Cotter P.D., Ross R.P., Hill C. Bioengineering of the model lantibiotic nisin. Bioengineered. 2015; 6(4): 187–92. https://doi.org/10.1080/21655979.2015.1049781
- Zhao X., Shi C., Meng R., Liu Z., Huang Y., Zhao Z. et al. Effect of nisin and perilla oil combination against Listeria monocytogenes and Staphylococcus aureus in milk. J Food Sci Technol. 2016; 53(6): 2644–53. https://doi.org/10.1007/s13197-016-2236-6
- Nerandzic M.M., Donskey C.J. Activate to eradicate: inhibition of Clostridium difficile spore outgrowth by the synergistic effects of osmotic activation and nisin. PLoS One. 2013; 8(1): e54740. https://doi.org/10.1371/journal.pone.0054740
- Overbeck T.J., Welker D.L., Hughes J.E., Steele J.L., Broadbent J.R. Transient MutS-based hypermutation system for adaptive evolution of Lactobacillus casei to low pH. Appl Environ Microbiol. 2017; 83(20): e01120–17. https://doi.org/10.1128/aem.01120-17
- Bang C., Vierbuchen T., Gutsmann T., Heine H., Schmitz R.A. Immunogenic properties of the human gut-associated archaeon Methanomassiliicoccus luminyensis and its susceptibility to antimicrobial peptides. PLoS One. 2017; 12(10): e0185919. https://doi.org/10.1371/journal.pone.0185919
- Hatziioanou D., Gherghisan-Filip C., Saalbach G., Horn N., Wegmann U., Duncan S.H. et al. Discovery of a Novel Lantibiotic Nisin O from Blautia-Obeum A2-162, Isolated from the Human Gastrointestinal Tract. Microbiology. 2017; 163(9): 1292–305. https://doi.org/10.1099/mic.0.000515
- Giardina A., Alduina R., Gallo G., Monciardini P., Sosio M., Puglia A.M. Inorganic phosphate is a trigger factor for Microbispora sp. ATCC-PTA-5024 growth and NAI-107 production. Microb Cell Fact. 2014; 13: 133. https://doi.org/10.1186/s12934-014-0133-0
- Gravesen A., Kallipolitis B., Holmstrøm K., Høiby P.E., Ramnath M., Knøchel S. pbp2229-mediated nisin resistance mechanism in Listeria monocytogenes confers cross-protection to class IIa bacteriocins and affects virulence gene expression. Appl Environ Microbiol. 2004; 70(3): 1669–79. https://doi.org/10.1128/aem.70.3.1669-1679.2004
- Lin L., Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 2017; 18(1): 2.https://doi.org/10.1186/s12865-016-0187-3
- Kindrachuk J., Jenssen H., Elliott M., Nijnik A., Magrangeas-Janot L., Pasupuleti M. et al. Manipulation of innate immunity by a bacterial secreted peptide: lantibiotic nisin Z is selectively immunomodulatory. Innate Immun. 2013; 19(3): 315–27. https://doi.org/10.1177/1753425912461456.3389/fmicb.2018.02297
- Gabrielsen C., Brede D.A., Nes I.F., Diep D.B. Circular bacteriocins: biosynthesis and mode of action. Appl Environ Microbiol. 2014; 80(22): 6854–62. https://doi.org/10.1128/aem.02284-14
- Perez R.H., Zendo T., Sonomoto K. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact. 2014; 13(Suppl. 1): S3. https://doi.org/10.1186/1475-2859-13-s1-s3
- Kamarajan P., Hayami T., Matte B., Liu Y., Danciu T., Ramamoorthy A. et al. Nisin ZP, a bacteriocin and food preservative, inhibits head and neck cancer tumorigenesis and prolongs survival. PLoS One. 2015; 10(7): e0131008. https://doi.org/10.1371/journal.pone.0131008
- Carroll J., Field D., O’Connor P.M., Cotter P.D., Coffey A., Hill C. et al. Gene encoded antimicrobial peptides, a template for the design of novel anti-mycobacterial drugs. Bioeng Bugs. 2010; 1(6): 408–12. https://doi.org/10.4161/bbug.1.6.1364
Supplementary files
